THE EXISTENCE OF BIPARTITE ALMOST SELF-COMPLEMENTARY 3-UNIFORM HYPERGRAPHS

L.N. Kamble, C.M. Deshpande, and B.P. Athawale

Communicated by Adam Pawel Wojda

Abstract. An almost self-complementary 3-uniform hypergraph on n vertices exists if and only if n is congruent to 3 modulo 4. A hypergraph H with vertex set V and edge set E is called bipartite if V can be partitioned into two subsets V_1 and V_2 such that $e \cap V_1 \neq \emptyset$ and $e \cap V_2 \neq \emptyset$ for any $e \in E$. A bipartite self-complementary 3-uniform hypergraph H with partition (V_1, V_2) of the vertex set V such that $|V_1| = m$ and $|V_2| = n$ exists if and only if either (i) m = n or (ii) $m \neq n$ and either m or n is congruent to 0 modulo 4 or (iii) $m \neq n$ and both m and n are congruent to 1 or 2 modulo 4. In this paper we define a bipartite almost self-complementary 3-uniform hypergraph H with partition (V_1, V_2) of a vertex set V such that $|V_1| = m$ and $|V_2| = n$ and find the conditions on m and n for a bipartite 3-uniform hypergraph H to be almost self-complementary. We also prove the existence of bi-regular bipartite almost self-complementary 3-uniform hypergraphs.

Keywords: almost self-complementary 3-uniform hypergraph, bipartite hypergraph, bipartite self-complementary 3-uniform hypergraph, bipartite almost self-complementary 3-uniform hypergraph.

Mathematics Subject Classification: 05C65.

1. INTRODUCTION

Let V be a finite set with n vertices. By $\binom{V}{k}$ we denote the set of all k-subsets of V. A k-uniform hypergraph is a pair H=(V;E), where $E\subset \binom{V}{k}$. V is called a vertex set, and E an edge set of H. Two k-uniform hypergraphs H=(V;E) and H'=(V';E') are isomorphic if there is a bijection $\sigma:V\to V'$ such that σ induces a bijection of E onto E'. If H=(V;E) is isomorphic to $H'=(V;\binom{V}{k}-E)$, then H is called a self-complementary k-uniform hypergraph. Every permutation $\pi:V\to V$ which induces a bijection $\pi':E\to\binom{V}{k}-E$ is called a self-complementing permutation.

A. Symański, A.P. Wojda ([9,10,12]) and S. Gosselin [3], independently characteristic V.

A. Symański, A.P. Wojda ([9,10,12]) and S. Gosselin [3], independently characterized n and k for which there exist k-uniform self-complementary hypergraphs of order n and gave the structure of corresponding complementing permutations.

A k-uniform hypergraph H=(V;E) is called almost self-complementary if it is isomorphic with $H'=(V;\binom{V}{k}-E-\{e\})$, where e is an element of the set $\binom{V}{k}$. Almost self-complementary k-uniform hypergraph of order n may be called self-complementary in K_n^k-e . The almost self-complementary 2-uniform hypergraphs, i.e. almost self-complementary graphs are introduced by Clapham in [1]. In [5], almost self-complementary 3-uniform hypergraphs are considered. In [11], Wojda generalized corresponding results of [1] for k=2 and of [5] for k=3 for any $k\geq 2$. A.P. Wojda proved that an almost self-complementary k-uniform hypergraph of order n exists if and only if $\binom{n}{k}$ is odd.

T. Gangopadhyay and S.P. Rao Hebbare [2] studied bipartite self-complementary graphs. In [6] a bipartite self-complementary 3-uniform hypergraph H with partition (V_1, V_2) of a vertex set V such that $|V_1| = m$ and $|V_2| = n$ is defined and a necessary and sufficient conditions on m and n for its existence is proved.

In this paper, we extend the concept of almost self-complementary 3-uniform hypergraphs to bipartite self-complementary 3-uniform hypergraphs. In Section 3, we define a bipartite almost self-complementary 3-uniform hypergraph and prove a necessary and sufficient condition for its existence. Further in Section 4, we prove existence of bi-regular bipartite almost self-complementary 3-uniform hypergraphs.

2. PRELIMINARY DEFINITIONS AND RESULTS

Definition 2.1. A hypergraph H with vertex set V and edge set E is called *bipartite* if V can be partitioned into two subsets V_1 and V_2 such that $e \cap V_1 \neq \emptyset$ and $e \cap V_2 \neq \emptyset$ for any $e \in E$.

Furthermore if |e| = k for every $e \in E$ then we call H, a bipartite k-uniform hypergraph, and denote it as $H^k(V_1, V_2)$. If $|V_1| = m$ and $|V_2| = n$ then $H^k(V_1, V_2) = H^k_{(m,n)}$.

If $H^3(V_1, V_2)$ is a bipartite 3-uniform hypergraph then every edge of $H^3(V_1, V_2)$ contains one vertex from one part and two vertices from the other part of the partition V_1 and V_2 of V. Thus any triple of vertices $\{x, y, z\}$ such that x, y, z belong to a single part of the partition of V is not an edge of $H^3(V_1, V_2)$.

Definition 2.2. A 3-uniform hypergraph H with the vertex set $V = V_1 \cup V_2$, $V_1 \cap V_2 = \emptyset$ and the edge set $E = \{e : e \subset V, |e| = 3 \text{ and } e \cap V_i \neq \emptyset, \text{ for } i = 1, 2\}$ is called the complete bipartite 3-uniform hypergraph. It is denoted as $K^3(V_1, V_2)$ or $K^3_{(m,n)}$.

Clearly, the total number of edges in $K_{(m,n)}^3$ is $m\binom{n}{2} + n\binom{m}{2} = \frac{mn(m+n-2)}{2}$.

Definition 2.3. Given a bipartite 3-uniform hypergraph $H = H^3(V_1, V_2)$, we define its bipartite complement to be the 3-uniform hypergraph $\bar{H} = \bar{H}^3(V_1, V_2)$, where $V(\bar{H}) = V(H)$ and $E(\bar{H}) = E(K^3(V_1, V_2)) - E(H)$.

Definition 2.4. A bipartite 3-uniform hypergraph $H = H^3(V_1, V_2)$ is said to be self-complementary if it is isomorphic to its bipartite complement $\bar{H} = \bar{H}^3(V_1, V_2)$,

that is there exists a bijection $\sigma: V \to V$ such that e is an edge in H if and only if $\sigma(e)$ is an edge in \bar{H} .

That is, there exists a bijection $\sigma: V \to V$ such that $e = \{x, y, z\}$ is an edge in H if and only if $\sigma(e) = \{\sigma(x), \sigma(y), \sigma(z)\}$ is an edge in \bar{H} . Such a σ is called a complementing permutation.

In [5], the cycle structure of complementing permutation of almost self-complementary 3-uniform hypergraphs is analyzed. In [6], the cycle structure of complementing permutation of bipartite self-complementary 3-uniform hypergraphs is analyzed.

Definition 2.5. The *degree* of a vertex v in a hypergraph H is the number of edges containing the vertex v and is denoted as $d_H(v)$.

Definition 2.6. A hypergraph H is said to be regular if all vertices have the same degree.

Definition 2.7. A hypergraph H is said to be *bi-regular* if there exist two distinct positive integers d_1 and d_2 such that the degree of each vertex is either d_1 or d_2 .

Definition 2.8. A hypergraph H is said to be *quasi-regular* if the degree of each vertex is either r or r-1 for some positive integer r.

It is clear that every quasi-regular hypergraph is bi-regular but not conversely. Following theorem gives necessary and sufficient condition on the order of bipartite 3-uniform hypergraph $H_{(m,n)}^3$ to be self-complementary which is proved in [6].

Theorem 2.9. There exists a bipartite self-complementary 3-uniform hypergraph $H^3_{(m,n)}$ if and only if either

- (i) m = n, or
- (ii) $m \neq n$ and either m or n is congruent to 0 modulo 4, or
- (iii) $m \neq n$ and both m and n are congruent to 1 or 2 modulo 4.

3. EXISTENCE OF

BIPARTITE ALMOST

SELF-COMPLEMENTARY 3-UNIFORM HYPERGRAPHS

In this section, we define a bipartite almost self-complementary 3-uniform hypergraph and prove its existence.

Definition 3.1. The hypergraph $\tilde{K}^3_{(m,n)} = K^3_{(m,n)} - e$ is called an almost complete bipartite 3-uniform hypergraph.

The hypergraph $\tilde{K}^3_{(m,n)}$ is a bipartite 3-uniform hypergraph obtained by deleting any edge e from $K^3_{(m,n)}$. We always denote by e the edge deleted from $K^3_{(m,n)}$, call it as the missing edge and the corresponding vertices of e the special vertices.

Definition 3.2. A 3-uniform bipartite hypergraph $H(V_1, V_2)$ such that $|V_1| = m$ and $|V_2| = n$ is almost self-complementary if it is isomorphic with its complement $\bar{H}(V_1, V_2)$ with respect to $\tilde{K}^3_{(m,n)} = K^3_{(m,n)} - e$.

This means that a 3-uniform hypergraph $H(V_1, V_2)$ is almost self-complementary if $\tilde{K}^3_{(m,n)}$ can be decomposed into two isomorphic factors with $H(V_1, V_2)$ as one of the factors.

We use the shortform "bipasc" for bipartite almost self-complementary 3-uniform hypergraph.

Let $H(V_1,V_2)$ be a bipartite almost self-complementary 3-uniform hypergraph such that $|V_1|=m$ and $|V_2|=n$. Let the edges of $H(V_1,V_2)$ be coloured red and the remaining edges of $\tilde{K}^3_{(m,n)}=K^3_{(m,n)}-e$ be coloured green. Since the 2 factors are isomorphic, there is a permutation σ of the vertices of $\tilde{K}^3_{(m,n)}$ that induces a mapping of the red edges onto the green edges. We consider σ as a permutation of the vertices of $K^3_{(m,n)}$, and denote by σ' the corresponding mapping induced on the set of edges of $K^3_{(m,n)}$. Thus σ' maps each red edge onto a green edge. However, the mapping σ' need not necessarily map each green edge onto a red edge. This would be so if σ' mapped e onto itself, but it may happen that σ' maps e onto a red edge and some green edge onto e. Such a σ (which, for definiteness, we shall always assume that it induces a mapping from red to green) will (as for s.c. 3-uniform hypergraphs) be called a complementing permutation. Note that a cycle of σ' that does not include e must be of even length, consisting of edges alternately red and green. The cycle of σ' that includes e has odd length, consisting of e followed by red and green edges alternately. Further this length equals 1 when σ' maps e onto itself.

Since $\tilde{K}^3_{(m,n)}$ has $\frac{mn(m+n-2)}{2}-1$ edges, its decomposition into two isomorphic factors is possible only if this number is divisible by 2. This means that $K^3_{(m,n)}$ should have an odd number of edges. We know that $K^3_{(m,n)}$ has an even number of edges if m=n and for $m\neq n$, either (i) either m or n is congruent to 0 modulo 4 or (ii) both m and n are congruent to 1 or 2 or 3 modulo 4. That is, $K^3_{(m,n)}$ has an odd number of edges if $m\neq n$ and, either (i) one is congruent to 1 modulo 4 and the other is congruent to 2 or 3 modulo 4 or (ii) one is congruent to 2 modulo 4 and the other is congruent to 1 or 3 modulo 4.

In the following theorem we prove that the above conditions on m and n for existence of bipasc are not only necessary but are also sufficient.

Theorem 3.3. There exists a bipasc 3-uniform hypergraph $H^3_{(m,n)}$ with partition (V_1, V_2) of vertex set V, where $|V_1| = m$ and $|V_2| = n$ if and only if $m \neq n$ and either

- (i) one is congruent to 1 modulo 4 and the other is congruent to 2 or 3 modulo 4, or
- (ii) one is congruent to 2 modulo 4 and the other is congruent to 1 or 3 modulo 4.

Proof. Necessity follows from the above discussions. To prove the sufficiency, we need to construct a bipasc $H^3_{(m,n)}$ with partition (V_1, V_2) of vertex set V, where $|V_1| = m$ and $|V_2| = n$, for all possible values of m and n.

Case (1). Suppose m is congruent to 1 modulo 4 and n is congruent to 2 modulo 4. Let m = 4k + 1 and n = 4l + 2 for some positive integers k and l.

Let

$$V_1 = \{u_1, u_2, \dots, u_{4k}, x\}$$
 and $V_2 = \{v_1, v_2, \dots, v_{4l}, y_1, y_2\}.$

Let G_1 be a self-complementary graph on m = 4k + 1 vertices with vertex set V_1 and G_2 be a self-complementary graph on 4l vertices with vertex set $V_{G_2} = \{v_1, v_2, \dots, v_{4l}\}$. Let σ_1 and σ_2 be complementing permutations of G_1 and G_2 , respectively.

We let $e = \{x, y_1, y_2\}$ to be the missing edge.

Consider following subsets of the edge set of $\tilde{K}^3_{(m,n)}$.

 $E_1 = \{e_1 \cup \{v\} \mid v \in V_2 \text{ and } e_1 \text{ is an edge in } G_1\},\$

 $\bar{E}_1 = \{e_1' \cup \{v\} \mid v \in V_2 \text{ and } e_1' \text{ is an edge in of the complement of } G_1\},$

 $E_2 = \{e_2 \cup \{u\} \mid u \in V_1 \text{ and } e_2 \text{ is an edge in } G_2\},\$

 $\bar{E}_2 = \{e'_2 \cup \{u\} \mid u \in V_1 \text{ and } e'_2 \text{ is an edge in of the complement of } G_2\},$

 $E_{y_1} = \{ \{ y_1, u, v \} \mid u \in V_1, v \in V_{G_2} \},\$

 $\bar{E}_{y_1} = \emptyset$,

 $E_{y_2} = \emptyset$,

 $\bar{E}_{y_2} = \{ \{ y_2, u, v \} \mid u \in V_1, v \in V_{G_2} \}.$

Since σ_1 is a complementing permutation of the self-complementary graph G_1 , $\sigma_1 = C_1 C_2 \cdots C_p$ (x), where every cycle C_i is of length being a multiple of 4 for each $i = 1, 2, \ldots, p$. Then each cycle C_i , $i = 1, 2, \ldots, p$ is of even length greater than 2.

$$C_i = (u_{i_1} u_{i_2} \dots u_{i_{2s_i}})$$
 for $i = 1, 2, \dots, p$,

and

$$E_{(y_1,y_2)}^i = \{ \{ y_1, y_2, u_{i_k} \} \mid k = 1, 3, \dots, 2s_i - 1 \},$$

$$\bar{E}_{(y_1,y_2)}^i = \{ \{ y_1, y_2, u_{i_k} \} \mid k = 2, 4, \dots, 2s_i \}.$$

All the above subsets form a partition of $\tilde{K}^3_{(m,n)}$. Let H be a 3-uniform hypergraph whose edge set is

$$E = E_1 \cup E_2 \cup E_{y_1} \cup E_{y_2} \cup \left(\bigcup_{i=1}^p E^i_{(y_1, y_2)}\right).$$

H is bipartite 3-uniform hypergraph with partition (V_1, V_2) of vertex set

$$V = \{u_1, u_2, \dots, u_{4k}, x, v_1, v_2, \dots, v_{4l}, y_1, y_2\}.$$

Define a bijection $\sigma: V(H) \to V(H)$ as $\sigma = \sigma_1 \sigma_2(y_1 \ y_2)$.

It can be easily checked that H is almost self-complementary with σ as its complementing permutation.

Case (2). Suppose m is congruent to 1 modulo 4 and n is congruent to 3 modulo 4. Let m = 4k + 1 and n = 4l + 3 for some positive integers k and l. Let

$$V_1 = \{u_1, u_2, \dots, u_{4k}, x\}$$
 and $V_2 = \{v_1, v_2, \dots, v_{4l}, y, y_1, y_2\}.$

Let G_1 be a self-complementary graph on m = 4k + 1 vertices with vertex set V_1 and G_2 be a self-complementary graph on 4l + 1 vertices with vertex set $V_{G_2} = \{v_1, v_2, \dots, v_{4l}, y\}$. Let σ_1 and σ_2 be complementing permutations of G_1 and G_2 , respectively. Let $e = \{x, y_1, y_2\}$ be the missing edge.

We construct a bipasc exactly the same way as in Case (1).

Case (3). Suppose m is congruent to 3 modulo 4 and n is congruent to 2 modulo 4. Let m = 4k + 3 and n = 4l + 2 for some positive integers k and l.

Let

$$V_1 = \{u_1, u_2, \dots, u_{4k}, x, x_1, x_2\}$$
 and $V_2 = \{v_1, v_2, \dots, v_{4l}, y_1, y_2\}.$

Let $e = \{x, y_1, y_2\}$ be the missing edge.

Construct H_1 as in Case (1) on

$$V_1' = \{u_1, u_2, \dots, u_{4k}, x\} \cup \{v_1, v_2, \dots, v_{4l}, y_1, y_2\}$$

vertices with complementing permutation $\sigma_1\sigma_2(y_1|y_2)$ such that

$$\sigma_1 = (x) \prod_{i=1}^p C_i$$
 and $\sigma_2 = \prod_{j=1}^q C'_j$,

where each C_i and C'_j is a cycle of length a multiple of 4.

Let

$$C_i = (u_{i_1} u_{i_2} \dots u_{i_{2s}})$$
 for $i = 1, 2, \dots, p$

and let

$$C'_i = (v_{i_1} v_{i_2} \dots v_{i_{2t_i}})$$
 for $i = 1, 2, \dots, q$.

 $E_{x_1} = \{\{x_1\} \cup e \mid e \text{ is an edge in } G_2\} \cup \{\{x_1, u, v\} \mid u \in V_1', v \in V_2\},\$

 $\bar{E}_{x_1} = \{ \{x_1\} \cup e \mid e \text{ is not an edge in } G_2 \},$

 $E_{x_2} = \{ \{x_2\} \cup e \mid e \text{ is an edge in } G_2 \},\$

 $\bar{E}_{x_2} = \{\{x_2\} \cup e \mid e \text{ is not an edge in } G_2\} \cup \{\{x_2, u, v\} \mid u \in V_1', v \in V_2\},\$

$$E_{(x_1,x_2)}^j = \{\{x_1,x_2,v_{j_k}\} \mid k=1,3,\ldots,2t_j-1\},\$$

$$\bar{E}^{j}_{(x_1,x_2)} = \{\{x_1,x_2,v_{j_k}\} \mid k=2,4,\ldots,2t_j\}.$$

Consider H on $V_1 \cup V_2$ with edges containing the edge set of H_1 and $\{x_1, x_2, y_1\} \cup E_{x_1} \cup E_{x_2} \cup (\bigcup_j (E^j_{(x_1, x_2)}))$. It can be easily checked that H is bipasc with $\sigma = \sigma_1 \sigma_2(x_1 \ x_2)(y_1 \ y_2)$.

Bipartite almost self-complementary 3-uniform hypergraphs in a sense fill the gap where bipartite self-complementary 3-uniform hypergraphs do not exist.

4. EXISTENCE OF BI-REGULAR BIPARTITE ALMOST SELF-COMPLEMENTARY 3-UNIFORM HYPERGRAPHS

It is known that a regular self-complementary 3-uniform hypergraph exists if and only if n is congruent to 1 or 2 modulo 4 [8]. In [5], it is proved that there does not exist a regular almost self-complementary 3-uniform hypergraph on n vertices, where n is congruent to 3 modulo 4. In [7], it is proved that, there exists a regular bipartite self-complementary 3-uniform hypergraph $H(V_1, V_2)$ with $|V_1| = m, |V_2| = n, m+n > 3$ if and only if m = n and n is congruent to 0 or 1 modulo 4.

We have every edge of $\tilde{K}^3(V_1,V_2)=\tilde{K}^3_{(m,n)}$ contains one vertex from one part and two vertices from the other. Let $u\in V_1,v\in V_2$. Suppose u and v are not special vertices. If $e_1=\{u,x,y\}$ is an edge containing u then either (i) $x\in V_1$ and $y\in V_2$, or (ii) $x,y\in V_2$. Considering both the possibilities we get that there are $n(m-1)+\binom{n}{2}$ number of edges containing u. Hence the degree of u in $\tilde{K}^3(V_1,V_2)=\tilde{K}^3_{(m,n)}$ is $n(m-1)+\binom{n}{2}$. Similarly, the degree of v in $\tilde{K}^3(V_1,V_2)=\tilde{K}^3_{(m,n)}$ is $m(n-1)+\binom{n}{2}$.

 $n(m-1)+\binom{n}{2}$. Similarly, the degree of v in $\tilde{K}^3(V_1,V_2)=\tilde{K}^3_{(m,n)}$ is $m(n-1)+\binom{m}{2}$. If u and v are special vertices, that is u and v are in the deleted edge e then the degree of u in $\tilde{K}^3(V_1,V_2)=\tilde{K}^3_{(m,n)}$ is $n(m-1)+\binom{n}{2}-1$ and the degree of v in $\tilde{K}^3(V_1,V_2)=\tilde{K}^3_{(m,n)}$ is $m(n-1)+\binom{m}{2}-1$.

This shows that there does not exist a regular bipartite almost self-complementary 3-uniform hypergraph.

In [4], it is proved that a quasi-regular self-complementary 3-uniform hypergraph of order n exists if and only if $n \geq 4$ and n is congruent to 0 modulo 4. In [5] it is proved that there exist a quasi regular almost self-complementary 3-uniform hypergraph on n vertices, where n is congruent to 3 modulo 4.

In [7], authors proved that a bipsc $H(V_1, V_2)$ with $|V_1| = m$, $|V_2| = n$ is quasi-regular if and only if either m = 3, n = 4 or m = n and n is congruent to 2 or 3 modulo 4. The following theorem gives the conditions for existence of a bi-regular bipasc $H(V_1, V_2)$ with $|V_1| = m$ and $|V_2| = n$.

Theorem 4.1. There exists a bi-regular bipartite almost self-complementary 3-uniform hypergraph $H(V_1, V_2)$ with $|V_1| = m, |V_2| = n, m \neq n, m + n > 3$ if and only if either one of m and n is 3 and the other is 1 or 2.

Proof. Suppose there exists a bi-regular bipasc $H(V_1, V_2)$ with $|V_1| = m$, $|V_2| = n$, $m \neq n$. Let d_1 and d_2 be the degrees of vertices of H. Let σ be a complementing permutation of $H(V_1, V_2)$.

For any vertex t in $H(V_1, V_2)$ we have $d_H(t) + d_H(\sigma(t)) =$ degree of t in $\tilde{K}^3(V_1, V_2) = \tilde{K}^3_{(m,n)}$. Using this, we get following equations.

If $u \in V_1$ is not a special vertex, then

$$d_H(u) + d_H(\sigma(u)) = n(m-1) + \binom{n}{2}.$$
 (4.1)

If $x \in V_1$ is a special vertex, then

$$d_H(x) + d_H(\sigma(x)) = n(m-1) + \binom{n}{2} - 1. \tag{4.2}$$

Similarly, if $v \in V_2$ is not a special vertex, then

$$d_H(v) + d_H(\sigma(v)) = m(n-1) + \binom{m}{2}.$$
 (4.3)

If $y \in V_2$ is a special vertex, then

$$d_H(y) + d_H(\sigma(y)) = m(n-1) + \binom{m}{2} - 1. \tag{4.4}$$

From equations (4.1) and (4.2) we get that either

$$d_1 + d_2 = n(m-1) + \binom{n}{2} \tag{4.5}$$

and

$$2d_1 = n(m-1) + \binom{n}{2} - 1 \tag{4.6}$$

or

$$2d_1 = n(m-1) + \binom{n}{2} \tag{4.7}$$

and

$$d_1 + d_2 = n(m-1) + \binom{n}{2} - 1. \tag{4.8}$$

Similarly, from equations (4.3) and (4.4) we get that either

$$d_1 + d_2 = m(n-1) + \binom{m}{2} \tag{4.9}$$

and

$$2d_1 = m(n-1) + \binom{m}{2} - 1 \tag{4.10}$$

or

$$2d_1 = m(n-1) + \binom{m}{2} \tag{4.11}$$

and

$$d_1 + d_2 = m(n-1) + \binom{m}{2} - 1. \tag{4.12}$$

(Note that in equations (4.6), (4.7), (4.10) and (4.11) degree is either d_1 or d_2 .) Equating $d_1 + d_2$ from equations (4.5), (4.6), (4.9) and (4.10), we get that

$$m(n-1) + \binom{m}{2} = n(m-1) + \binom{n}{2}.$$

Solving this equation we get that (m-n)(m+n-3)=0. That is, m=n or m+n-3=0, a contradiction.

Equating $d_1 + d_2$ from equations (4.5), (4.6), (4.11) and (4.12) we get that

$$n(m-1) + \binom{n}{2} = m(n-1) + \binom{m}{2} - 1.$$

Solving this equation we get that $m^2-n^2-3m+3n=2$. That is, (m-n)(m+n-3)=2. Suppose m>n. Then we get that either m-n=2, m+n-3=1 or m-n=1, m+n-3=2. If m-n=2, m+n-3=1, then we get that m=3, n=1. And if m-n=1, m+n-3=2, then we get that m=3, n=2.

Equating $d_1 + d_2$ from equations (4.7), (4.8), (4.9) and (4.10) we get that

$$n(m-1) + \binom{n}{2} - 1 = m(n-1) + \binom{m}{2}.$$

Solving this equation we get that $m^2-n^2-3m+3n=-2$. That is, (m-n)(m+n-3)=-2. Suppose m>n. Then we get that either m-n=1, m+n-3=-2 or m-n=2, m+n-3=-1. If m-n=1, m+n-3=-2 then we get that m=1, n=0, a contradiction. And if m-n=2, m+n-3=-1 then we get that m=2, n=0, a contradiction.

Equating $d_1 + d_2$ from equations (4.7), (4.8), (4.11) and (4.12) we get that

$$m(n-1) + \binom{m}{2} = n(m-1) + \binom{n}{2}.$$

Solving this equation we get that (m-n)(m+n-3)=0. That is, m=n or m+n-3=0, a contradiction.

Hence, if there exists a bi-regular bipartite almost self-complementary 3-uniform hypergraph $H(V_1, V_2)$ with $|V_1| = m, |V_2| = n, m \neq n, m+n > 3$ then either one of m and n is 3 and the other is 1 or 2.

Conversely, the following Example 4.2 gives a bi-regular bipartite almost self-complementary 3-uniform hypergraph for m = 1, n = 3 and m = 2, n = 3.

Example 4.2. (i) Consider $K_{(1,3)}^3$. Let $V_1 = \{u_1\}$ and $V_2 = \{v_1, v_2, v_3\}$ be a partition of the vertex set $V = \{u_1, v_1, v_2, v_3\}$. The edge set of $K_{(1,3)}^3$ is

$$E = \{\{u_1, v_1, v_2\}, \{u_1, v_1, v_3\}, \{u_1, v_2, v_3\}\}.$$

We delete the edge $e = \{u_1, v_2, v_3\}$ from $K_{(1,3)}^3$. Consider H with edge set $E_1 = \{\{u_1, v_1, v_2\}\}$. Then \bar{H} has edge set $E_2 = \{\{u_1, v_1, v_3\}\}$. Clearly, H is isomorphic to \bar{H} with complementing permutation $\sigma = (u_1)(v_1)(v_2 \ v_3)$ or $\sigma = (u_1)(v_1 \ v_3 \ v_2)$ with the missing edge $\{u_1, v_2, v_3\}$.

(ii) Consider $K_{2,3}^3$. Let $V_1 = \{u_1, u_2\}$ and $V_2 = \{v_1, v_2, v_3\}$ be a partition of the vertex set $V = \{u_1, u_2, v_1, v_2, v_3\}$. The edge set of $K_{(2,3)}^3$ is

$$E = \{\{u_1, v_1, v_2\}, \{u_1, v_1, v_3\}, \{u_1, v_2, v_3\}, \{u_2, v_1, v_2\}, \{u_2, v_1, v_3\}, \{u_2, v_2, v_3\}, \{u_1, u_2, v_1\}, \{u_1, u_2, v_2\}, \{u_1, u_2, v_3\}\}.$$

We delete $\{u_1, u_2, v_3\}$ from $K_{(2,3)}^3$. Consider H with edge set

$$E_1 = \{\{u_1, u_2, v_1\}, \{v_1, v_2, u_2\}, \{u_1, v_1, v_3\}, \{u_1, v_2, v_3\}\}.$$

Then \bar{H} has the edge set

$$E_2 = \{\{u_1, u_2, v_2\}, \{u_1, v_1, v_2\}, \{u_2, v_2, v_3\}, \{u_2, v_1, v_3\}\}.$$

Clearly, H is isomorphic to \bar{H} with complementing permutation $\sigma_1 = (u_1 \ u_2)(v_1 \ v_2)(v_3)$ with the missing edge $\{u_1, u_2, v_3\}$.

Remark 4.3. The bipasc given in Example 4.2 are in fact quasi-regular. Thus for bipasc 3-uniform hypergraphs we have that bi-regular if and only if quasi-regular.

Acknowledgements

Authors wish to thank Professor N.S. Bhave for fruitful discussions.

REFERENCES

- [1] C.R.J. Clapham, Graphs self-Complementary in $K_n e$, Discrete Math. 81 (1990), 229–235.
- [2] T. Gangopadhyay, S.P. Rao Hebbare, Structural properties of r-partite complementing permutations, Tech. Report No. 19/77, I.S.I, Calcutta.
- [3] S. Gosselin, Generating self-complementary uniform hypergraphs, Discrete Math. 310 (2010), 1366–1372.
- [4] L.N. Kamble, C.M. Deshpande, B.Y. Bam, Existence of quasi-regular and bi-regular self-complementary 3-uniform hypergraphs, Discuss. Math. Graph Theory 36 (2016), 419–426.
- [5] L.N. Kamble, C.M. Deshpande, B.Y. Bam, Almost self-complementary 3-uniform hypergraphs, Discuss. Math. Graph Theory 37 (2017), 131–140.
- [6] L.N. Kamble, C.M. Deshpande, B.P. Athawale, On self-complementary bipartite 3-uniform hypergraph, Ars. Combin. 146 (2019), 293–305.
- [7] L.N. Kamble, C.M. Deshpande, B.P. Athawale, The existence of regular and quasi-regular bipartite self-complementary 3-uniform hypergraphs, J. Comb. Math. Comb. Comput. 111 (2019), 257–268.
- [8] P. Potočnik, M. Šajana, The existence of regular self-complementary 3-uniform hypergraphs, Discrete Math. **309** (2009), 950–954.
- [9] A. Szymański, A.P. Wojda, A note on k-uniform self-complementary hypergraphs of given order, Discuss. Math. Graph Theory 29 (2009), 199–202.
- [10] A. Szymański, A.P. Wojda, Self-complementing permutations of k-uniform hypergraphs, Discrete Math. Theor. Comput. Sci. 11 (2009), 117–124.
- [11] A.P. Wojda, Almost self-complementary uniform hypergraphs, Discuss. Math. Graph Theory 38 (2018), 607–610.
- [12] A.P. Wojda, Self complementary hypergraphs, Discuss. Math. Graph Theory 26 (2006), 217–224.

 ${\rm L.N.~Kamble~(corresponding~author)} \\ {\rm lata7429@gmail.com}$

MES's Abasaheb Garware College, Pune Department of Mathematics Pune – 411004, Maharashtra, India

 $\begin{array}{l} {\rm C.M.\ Deshpande} \\ {\rm dcm.maths@coep.ac.in} \end{array}$

College of Engineering Pune Department of Mathematics Pune – 411005, Maharashtra, India

B.P. Athawale bhagyashriathawale@gmail.com

College of Engineering Pune Department of Mathematics Pune – 411005, Maharashtra, India

Received: January 23, 2023. Revised: May 5, 2023. Accepted: May 20, 2023.