PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

All-optical NOT and AND gates using nonlinear photonic crystal octagonal shape ring resonator

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper proposes novel all-optical logic NOT and AND gates using an octagonal-shaped ring resonator with Kerr nonlinearity created on the platform of a two-dimensional photonic crystal (2DPC). The ring resonator offers maximum transmission efficiency and is simpler than the previously published designs. In our design, the nonlinearity is applied only to the outer rods of the core (rather than the whole core section) of the ring resonator, increasing their size. The proposed gates exhibit low operating and switching powers compared to the earlier proposals, which is highly desired for practically integrating any all-optical device.
Czasopismo
Rocznik
Strony
471--482
Opis fizyczny
Bibliogr. 27 poz., rys., tab.
Twórcy
  • Department of Science and Mathematics, IIIT Naya Raipur, Chhattisgarh, India
  • Department of Science and Mathematics, IIIT Naya Raipur, Chhattisgarh, India
  • Department of ECE, IIIT Naya Raipur, Chhattisgarh, India
Bibliografia
  • [1] SAKODA K., Optical Properties of Photonic Crystals, Springer Science & Business Media, 2001.
  • [2] KALRA Y., SINHA R.K., Modelling and design of complete photonic band gaps in two-dimensional photonic crystals, Pramana 70(1), 2008: 153-161. https://doi.org/10.1007/s12043-008-0013-4
  • [3] MEADE R.D., BROMMER K.D., RAPPE A.M., JOANNOPOULOS J.D., Existence of a photonic band gap in two dimensions, Applied Physics Letters 61(4), 1992: 495-497. https://doi.org/10.1063/1.107868
  • [4] GUPTA P.K., PALTANI P.P., TRIPATHI S., Photonic crystal based all-optical switch using a ring resonator and Kerr effect, Fiber and Integrated Optics 41(5-6), 2022: 143-153. https://doi.org/10.1080/01468030.2022.2163725
  • [5] MEDHEKAR S., PALTANI P.P., All-optical passive transistor using counter-propagating beams in a nonlinear Mach-Zehnder interferometer, Fiber and Integrated Optics 28(4), 2009: 268-274. https://doi.org/10.1080/01468030902759307
  • [6] PARANDIN F., MALMIR M.-R., NASERI M., All-optical half-subtractor with low-time delay based on two-dimensional photonic crystals, Superlattices and Microstructures 109, 2017: 437-441. https://doi.org/10.1016/j.spmi.2017.05.030
  • [7] SHAMSI A., MORADI R., All optical analog to digital convertor using nonlinear photonic crystal ringresonators, Optical and Quantum Electronics 52(10), 2020: 435. https://doi.org/10.1007/s11082-020-02541-z
  • [8] GUPTA P.K., TRIPATHI S., PALTANI P.P., Optical add/drop filter and pressure sensor design using two-dimensional photonic crystal, 2022 Workshop on Recent Advances in Photonics (WRAP), Mumbai, India, IEEE, 2022: 1-2. https://doi.org/10.1109/WRAP54064.2022.9758383
  • [9] TAVOUSI A., Wavelength-division demultiplexer based on hetero-structure octagonal-shape photonic crystal ring resonators, Optik 179, 2019: 1169-1179. https://doi.org/10.1016/j.ijleo.2018.10.125
  • [10] HUSSEIN H.M.E., ALI T.A., RAFAT N.H., A review on the techniques for building all-optical photonic crystal logic gates, Optics & Laser Technology 106, 2018: 385-397. https://doi.org/10.1016/j.optlastec.2018.04.018
  • [11] GUPTA M.M., MEDHEKAR S., All-optical NOT and AND gates using counter propagating beams in nonlinear Mach–Zehnder interferometer made of photonic crystal waveguides, Optik 127(3), 2016: 1221-1228. https://doi.org/10.1016/j.ijleo.2015.10.176
  • [12] LI Z., LIU Y., ZHANG S., JU H., DE WAARDT H., KHOE G.D., DORREN H.J.S., LENSTRA D., All-optical logic gates using semiconductor optical amplifier assisted by the optical filter, Electronics Letters 41(25), 2005. https://doi.org/10.1049/el:20053385
  • [13] GUPTA P.K., PALTANI P.P., TRIPATHI S., All-optical simultaneous OR and NAND gates using photonic crystal ring resonator and Kerr effect, Physica Scripta 99, 2024: 015021. https://doi.org/10.1088/1402-4896/ad1651
  • [14] SHARIFI H., HAMIDI S.M., NAVI K., All-optical photonic crystal logic gates using nonlinear directional coupler, Photonics and Nanostructures - Fundamentals and Applications 27, 2017: 55-63. https://doi.org/10.1016/j.photonics.2017.10.002
  • [15] VEISI E., SEIFOURI M., OLYAEE S., A novel design of all-optical high speed and ultra-compact photonic crystal AND logic gate based on the Kerr effect, Applied Physics B 127, 2021: 70. https://doi.org/10.1007/s00340-021-07618-5
  • [16] RAHMANI A., ASGHARI M., An ultra-compact and high speed all-optical OR/NOR gate based on nonlinear PhCRR, Optik 138, 2017: 314-319. https://doi.org/10.1016/j.ijleo.2017.03.034
  • [17] SALMANPOUR A., MOHAMMADNEJAD S., BAHRAMI A., All-optical photonic crystal AND, XOR, and OR logic gates using nonlinear Kerr effect and ring resonators, Journal of Modern Optics 62(9), 2015: 693-700. https://doi.org/10.1080/09500340.2014.1003256
  • [18] REBHI S., NAJJAR M., A new design of a photonic crystal ring resonator based on Kerr effect for all-optical logic gates, Optical and Quantum Electronics 50(10), 2018: 358. https://doi.org/10.1007/s11082-018-1628-4
  • [19] SALMANPOUR A., MOHAMMADNEJAD S., OMRAN P.T., All-optical photonic crystal NOT and OR logic gates using nonlinear Kerr effect and ring resonators, Optical and Quantum Electronics 47(12), 2015: 3689-3703. https://doi.org/10.1007/s11082-015-0238-7
  • [20] ALIPOUR-BANAEI H., SERAJMOHAMMADI S., MEHDIZADEH F., All-optical NOR and NAND gate based on nonlinear photonic crystal ring resonators, Optik 125(19), 2014: 5701-5704. https://doi.org/10.1016/j.ijleo.2014.06.013
  • [21] ALIPOUR-BANAEI H., SERAJMOHAMMADI S., MEHDIZADEH F., All-optical NAND gate based on nonlinear photonic crystal ring resonators, Optik 130, 2017: 1214-1221. https://doi.org/10.1016/j.ijleo.2016.11.190
  • [22] MEHDIZADEH F., SOROOSH M., Designing of all-optical NOR gate based on photonic crystal, Indian Journal of Pure & Applied Physics 54, 2016: 35-39.
  • [23] POURSALEH A., ANDALIB A., An all-optical majority gate using nonlinear photonic crystal based ring resonators, Optica Applicata 49(3), 2019: 487-498. https://doi.org/10.5277/oa190310
  • [24] OGUSU K., YAMASAKI J., MAEDA S., KITAO M., MINAKATA M., Linear and nonlinear optical properties of Ag–As–Se chalcogenide glasses for all-optical switching, Optics Letters 29(3), 2004: 265-267. https://doi.org/10.1364/OL.29.000265
  • [25] JOHNSON S.G., JOANNOPOULOS J.D., Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis, Optic Express 8(3), 2001: 173-190. https://doi.org/10.1364/OE.8.000173
  • [26] OKAMOTO K., Fundamentals of Optical Waveguides, Elsevier, 2021.
  • [27] TAFLOVE A., Computational Electrodynamics: The Finite-difference Time-domain Method, Artech House, 1995.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-116e0b8f-c548-4b06-9544-dc072ea6774f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.