Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Pea gravel is a kind of a coarse aggregate with a specific particle size used to fill the annular gap between the lining segments and the surrounding ground when tunnel construction with shield machines is performed in hard rock. The main purpose of the present study is to propose quantitative morphological indices of the pea gravel and to establish their relations with the void content of the aggregate and the compressive strength of the mixture of pea gravel and slurry (MPS). Results indicate that the pea gravel of the crushed rock generally have a larger void content than that of the river pebble, and the grain size has the highest influence on the void ratio. Elongation, roughness and angularity have moderate influences on the void ratio. The content of the oversize or undersize particles in the sample affects the void ratio of the granular assembly in a contrary way. The compressive strength of the MPS made with the river pebble is obviously smaller than that of the MPS made with the crushed rock. In the crushed rock samples, the compressive strength increases with the increase of the oversize particle content. The relations between the morphological properties and the void content, and the morphological properties and the compressive strength of the MPS are expressed as regression functions. The outcomes of this study would assist with quality assessments in TBM engineering for the selection of the pea gravel material and the prediction of the compressive strength of the MPS.
Czasopismo
Rocznik
Tom
Strony
415--435
Opis fizyczny
Bibliogr. 40 poz., il., tab.
Twórcy
autor
- Yellow River Engineering Consulting Co.,Ltd. Zhengzhou, Henan, China
autor
- State Key Lab of Geohazard Preventionand Environment Protection (SKLGP), Chengdu University of Technology (CDUT),Chengdu, Sichuan, China
autor
- State Key Lab of Geohazard Preventionand Environment Protection (SKLGP), Chengdu University of Technology (CDUT), Chengdu, Sichuan, China
autor
- Yellow River Engineering Consulting Co., Ltd. Zhengzhou, Henan, China
Bibliografia
- [1] EFNARC. Specification and guidelines for the use of specialist products for Mechanized Tunnelling (TBM) in Soft Ground and Hard Rock. www.efnarc.org. 2005.
- [2] Maidl B., Herrenknecht M., Maidl U., Wehrmeyer G. Mechanised shield tunnelling / 2nd ed. Ernst & Sohn, 2011.
- [3] Pelizza S., Peila D., Borio L., Dal Negro E., Schulkins R. and Boscaro A. Analysis of the Performance of Two Component Back-filling Grout in Tunnel Boring Machines Operating under Face Pressure. Proceedings of ITAAITES World Tunnel Congress 2010: “Tunnel vision towards 2020”, Vancouver, May (2010), pp. 14-20.
- [4] Maidl O. I. H. C. M. B., Schmid L., Ritz W., et al. Hardrock Tunnel Boring Machines. Ernst & Sohn, 2008. https://doi.org/10.1002/9783433600122
- [5] Peila D., Luca B., Sebastiano P. The behaviour of a two-component backfilling grout used in a tunnel-boring machine. Acta geotechnica Slovenica, 2011.
- [6] Thewes M., Budach C. Grouting of the annular gap in shield tunnelling - an important factor for minimisation of settlements and production performance. Proceedings of the Ita, 2009.
- [7] Henzinger M. R., Radončić N., Moritz B. A., et al. Backfill of segmental lining - State of the art, redistribution behaviour of pea gravel, possible improvements / Tübbingbettung - Stand der Technik, Umlagerungsverhalten von Perlkies, Verbesserungspotenzial. Geomechanik Und Tunnelbau. 9 (3): pp. 188-199, 2016.
- [8] Lanaro F., Tolppanen P. 3D characterization of coarse aggregates. Engineering Geology. 65 (1): pp. 17-30, 2002. https://doi.org/10.1016/S0013-7952(01)00133-8
- [9] Sengul Ö., Tasdemir C., Tasdemir M. A. Influence of aggregate type on mechanical behaviour of normal and high-strength concretes. ACI Mater J. 99 (6): pp. 528-533, 2002.
- [10] Goble C. F., Cohen M. D. Influence of aggregate surface area on mechanical properties of mortar. ACI Mater J. 96 (6): pp. 657-662, 1999.
- [11] Mehta P. K., Ezeldin A. S., Aitcin P. C. Effect of coarse aggregate on the behavior of normal and high-strength concretes. Cement Concrete and Aggregates. 13(2): p. 4, 1991. https://doi.org/10.1520/CCA10128J
- [12] Cetin A., Carrasquillo R. L. High-performance concrete: influence of coarse aggregates on mechanical properties. ACI Mater J. 95 (3): pp. 252-261, 1998.
- [13] Zhou F. P., Lydon F. D., Barr BIG. Effect of coarse aggregate on elastic modulus and compressive strength of high-performance concrete. Cem Concr Res. 25 (1): pp. 177-186, 1995. https://doi.org/10.1016/0008-8846(94)00125-I
- [14] Uddin M. T., Mahmood A. H. Effects of maximum aggregate size on upv of brick aggregate concrete. Ultrasonics. 69: pp. 129-136, 2016. https://doi.org/10.1016/j.ultras.2016.04.006
- [15] Kawamoto R., Andrade J., Matsushima T. A 3-D mechanics-based particle shape index for granular materials. Mechanics Research Communications. 92: 67-73, 2018. https://doi.org/10.1016/j.mechrescom.2018.07.002
- [16] Wu J., Wang L., Hou Y., et al. A digital image analysis of gravel aggregate using CT scanning technique. International Journal of Pavement Research and Technology. 11 (2): pp. 160-167, 2018. https://doi.org/10.1016/j.ijprt.2017.08.002
- [17] Nikbin I. M., Beygi M. H. A., Kazemi M. T., et al. A comprehensive investigation into the effect of aging and coarse aggregate size and volume on mechanical properties of self-compacting concrete. Materials & Design. 59: pp. 199-210, 2014. https://doi.org/10.1016/j.matdes.2014.02.054
- [18] Masad E., Jandhyala V. K., Dasgupta N., Somadevan N., Shashidhar N. Characterization of air void distribution in asphalt mixes using X-ray computed tomography. J Mater Civil Eng. 14 (2): pp. 122-129, 2002. https://doi.org/10.1061/(ASCE)0899-1561(2002)14:2(122)
- [19] Meddah M. S., Zitouni S., Belâabes S. Effect of content and particle size distribution of coarse aggregate on the compressive strength of concrete. Constr Build Mater. 24 (4): pp. 505-512, 2010. https://doi.org/10.1016/j.conbuildmat.2009.10.009
- [20] Masad E., Button J. W. Unified imaging approach for measuring aggregate angularity and texture. Comput-Aided Civil Infrastruct Eng. 15: pp. 273-280, 2000. https://doi.org/10.1111/0885-9507.00191
- [21] Caliskan S., Karihaloo B. L. Effect of surface roughness, type and size of model aggregates on the bond strength of aggregate/mortar interface. Interface Science. 12(4): pp. 361-374, 2004. https://doi.org/10.1023/B:INTS.0000042334.43266.62
- [22] Zhang D., Huang X., Zhao Y. Investigation of the shape, size, angularity and surface texture properties of coarse aggregates. Constr Build Mater. 34: pp. 330-336, 2012. https://doi.org/10.1016/j.conbuildmat.2012.02.096
- [23] Masad E., Muhunthan B., Shashidhar N., Harman T. Internal structure characterization of asphalt concrete using image analysis. Journal of Computing in Civil Engineering. 13 (2): pp. 88-95, 1999. https://doi.org/10.1061/(ASCE)0887-3801(1999)13:2(88)
- [24] Mora C., Kwan A. Sphericity, shape factor, and convexity measurement of coarse aggregate for concrete using digital image processing. Cement & Concrete Research. 30 (3): pp. 351-358, 2000. https://doi.org/10.1016/S0008-8846(99)00259-8
- [25] Roussillon T., Piégay H., Sivignon I., Tougne L., Lavigne F. Automatic computation of pebble roundness using digital imagery and discrete geometry. Comput. Geosci. 35: pp. 1992-2000, 2009. https://doi.org/10.1016/j.cageo.2009.01.013
- [26] Al-Rousan T., Masad E., Tutumluer E., Pan T. Evaluation of image analysis techniques for quantifying aggregate shape characteristics. Constr Build Mater. 21 (5): pp. 978-990, 2007. https://doi.org/10.1016/j.conbuildmat.2006.03.005
- [27] Rao C., Tutumluer E., Kim I. T. Quantification of coarse aggregate angularity based on image analysis. Transport Res Rec. 1787: pp. 117-124, 2002. https://doi.org/10.3141/1787-13
- [28] Drevin G. R. Computational methods for the determination of roundness of sedimentary particles. Math. Geol. 38: pp. 871-890, 2007. https://doi.org/10.1007/s11004-006-9051-y
- [29] Montenegro Ríos A., Sarocchi D., Nahmad-Molinari Y., Borselli L. Form from projected shadow (FFPS): an algorithm for 3D shape analysis of sedimentary particles. Comput. Geosci. 60: pp. 98-108, 2013. https://doi.org/10.1016/j.cageo.2013.07.008
- [30] Hayakawa Y., Oguchi T. Evaluation of gravel sphericity and roundness based on surface-area measurement with a laser scanner. Comput. Geosci. 31: pp. 735-741, 2005. https://doi.org/10.1016/j.cageo.2005.01.004
- [31] Lin C. L., Miller J. D. 3D characterization and analysis of particle shape using X-ray microtomography (XMT). Powder Technol. 154: pp. 61-69, 2005. https://doi.org/10.1016/j.powtec.2005.04.031
- [32] Zhao B., Wang J. 3D quantitative shape analysis on form, roundness, and compactness with μCT. Powder Technol. 291: pp. 262-275, 2016. https://doi.org/10.1016/j.powtec.2015.12.029
- [33] Mathieu C., Hervé, Piégay, Jérôme, Lavé, Lise V., Danang H. S., Sandy W. B., et al. Evaluating a 2d image-based computerized approach for measuring riverine pebble roundness. Geomorphology. 311: pp. 143-157, 2018. https://doi.org/10.1016/j.geomorph.2018.03.020
- [34] Koohmishi M., Palassi M. Evaluation of morphological properties of railway ballast particles by image processing method. Transportation Geotechnics. 12: pp. 15-25, 2017. https://doi.org/10.1016/j.trgeo.2017.07.001
- [35] Ding, X., Ma, T., Gao, W. Morphological characterization and mechanical analysis for coarse aggregate skeleton of asphalt mixture based on discrete-element modeling. Construction & Building Materials, 154 (Nov. 15): pp. 1048-1061, 2017. https://doi.org/10.1016/j.conbuildmat.2017.08.008
- [36] Janoo, V. C., Bayer, J. J. The effect of aggregate angularity on base course performance. Effect of Aggregate Angularity on Base Course Performance. 2001.
- [37] Jebli, M., Jamin, F., Malachanne, E., Garcia-Diaz, E., Youssoufi, M. E. Experimental characterization of mechanical properties of the cement-aggregate interface in concrete. Construction & Building Materials, 161 (Feb. 10): pp. 16-25, 2017. https://doi.org/10.1051/epjconf/201714012014
- [38] Gu, X., Li, H., Wang, Z., Feng, L. Experimental study and application of mechanical properties for the interface between cobblestone aggregate and mortar in concrete - science direct. Construction and Building Materials, 46(46): pp. 156-166, 2013. https://doi.org/10.1016/j.conbuildmat.2013.04.028
- [39] Koohmishi, M., Palassi, M. Evaluation of morphological properties of railway ballast particles by image processing method. Transportation Geotechnics. 12: pp. 15-25, 2017. https://doi.org/10.1016/j.trgeo.2017.07.001
- [40] Siregar A. P. N., Rafiq M. I., Mulheron M. Experimental investigation of the effects of aggregate size distribution on the fracture behaviour of high strength concrete. Constr Build Mater. 150: pp. 252-259, 2017. https://doi.org/10.1016/j.conbuildmat.2017.05.142
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-116c2f80-07c1-45de-a0f1-5c29ef71206c