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1. Introduction

Attempts to solve the network reliability issue have been made 
for years. The problem is important due to growing requirements in 
terms of reliable operation of various networks whose reliability is 
considered already at the design stage [8, 23]. Computer, communica-
tion, gas, water supply, power and other networks are still expanding 
and becoming increasingly complex. Determination of the reliabil-
ity of such networks is complicated and in many cases is a NP–hard 
problem [1, 2, 20]. The solutions suggested in the literature most often 
relate to a determination of the reliability of undirected networks due 
to their coherence and structure of links [22] or due to their effective 
distribution [6,28]. There are also attempts to account for both aspects 
in the reliability evaluation [18].

Three kinds of accurate computations exist for the network reli-
ability: exact [13], approximate and boundary values [5,10]. Since 
Moskovitz [14] used it as an accurate method of network reliabil-
ity determination due to its coherence, the factoring algorithm has 
very often been used, investigated and modified [17, 21]. The net-

work model in the factoring algorithm is an undirected graph, and 
the reliability measure is the probability of connectedness among the 
specified set of nodes – K-terminal network reliability [7, 27]. The 
reliability is determined by a reduction of the graph representing the 
network with the assumption that the network nodes are perfectly re-
liable [3, 4]. The reliability determination of networks with failing 
links and nodes was also considered and the proposed computation 
methods were presented in [11, 24, 25]. As network reduction is sig-
nificantly time-consuming, there was a search for quicker and more 
effective methods [12]. The following can be used for these purposes: 
series-parallel, polygon-to-chain, delta-to-star, degree-1 and degree-2 
reductions, and also other methods [9, 2 6]. The formula obtained as a 
result of reduction allows computing a specified measure of network 
reliability for the chosen time. Practical applications of the factoring 
algorithm mainly regard real gas and water supply networks [15, 18] 
as well as computer networks [23].
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W opracowaniu przedstawiono metodę wyznaczania niezawodności sieci, w których elementy (połączenia i węzły) mogą się 
uszkadzać i są odnawiane. Przedstawiona metoda wykorzystuje algorytm faktoryzacji, zaproponowaną metodę π oraz symulację 
komputerową. Na podstawie algorytmu faktoryzacji wyznaczany jest wzór do dokładnego obliczania niezawodności sieci jako 
prawdopodobieństwa połączenia między wybranym zbiorem K węzłów (RN(K) ). Obliczana w ten sposób niezawodność dotyczy 
przypadków gdy tylko połączenia mogą się uszkadzać i nie są odnawiane. W celu obliczania niezawodności sieci z odnawianymi 
połączeniami i węzłami wprowadzono quasi uszkodzenia połączeń, które występują na skutek uszkodzeń węzłów do nich przyle-
głych – metoda π. Opracowana metoda pozwala uwzględnić odnawianie wszystkich elementów sieci po uszkodzeniu jak również 
możliwość wyboru zbioru węzłów (Nf ), które mogą się niezależnie uszkadzać. Ponadto rozkłady prawdopodobieństwa czasu pracy 
do uszkodzenia dowolnie określonych zbiorów węzłów i połączeń mogą być różne. Do zaproponowanej metody opracowano symu-
lacyjny model obliczeniowy, który umożliwia wyznaczenie niezawodności sieci (RN(K)(t)) z odnawianymi połączeniami i węzłami. 
Zgodnie z opracowanym modelem wykonano przykładowe obliczenia numeryczne i przedstawiono ich wyniki.

Słowa kluczowe:	 niezawodność sieci, algorytm faktoryzacji, uszkadzające się połączenia, uszkadzające się 
węzły, naprawialne elementy, metoda π, symulacja.
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However, the reliability computed in this manner does not take 
into account the repair of failing network elements. The elements of 
real networks such as pipelines, telecommunication lines etc. are al-
ways repaired after failure. For the network reliability determination 
model to better reflect the reality, the repair of elements should be 
taken into account.

This paper presents the method of network reliability determina-
tion as the probability of connectedness among the specified set of 
nodes (K-terminal network reliability) taking into account the repair 
of failing links and nodes. The failures and repairs of nodes were im-
plemented according to the proposed π method. The proposed model 
of reliability computation uses the classic factoring algorithm, the π 
method and the simulation method suitably adapted to them. The reli-
ability computation for networks with repairable elements comprises 
two stages. In stage I, which is based on classic factoring algorithm, 
the formula is obtained for accurate computation of reliability of a net-
work without repair of the elements. In stage II, the formula and the 
π method are used in the simulation procedure wherein the network 
reliability is determined when the nodes are repaired after failure. 

2. Notation and assumptions

G = (V,E) –undirected graph which represents an undirected network,
V = (v1,v2,…,vn ) – set of vertices in a graph representing nodes in a 

network,
E = (e1,e2,…,em ) – set of edges in a graph representing links in a net-

work, 
vj	 –	 vertex in a graph and node in a network, vj ∈ V,
ei	 –	 edge in a graph and link in a network, ei ∈ E,
n	 –	 number of nodes in a network, n=|V |,
Nf 	 –	 set of nodes which can fail, nf ⊆V,
m	 –	 number of links in a network, m=|E |,
K	 –	 specified set of vertices in a graph (nodes in a network) which 

should be connected in order to guarantee the network’s operating 
state,

GK	 –	 graph with specified set K⊆V,
xi(t) – state of link ei at time t expressed in a binary manner, 

xi ∈ {0,1}, 
sei(t)	–	 state of link ei at time t expressed in a numerical manner, 

sei ∈ {1,0,−1,−2},
pi =Pr(xi=1)	–	 probability that link ei is in an operating state, 
qi =1− pi = Pr(xi = 0)	–	 probability that link ei is in a failure state,
RN(K)	=	R(GK) – network reliability – probability of connectedness 

among the specified set K of nodes (K-terminal network reliability),
AM	–	 adjacency matrix of a network,

( )1 2( ) ( ), ( ), , ( )mX t x t x t x t= …  – set of all links’ states at time t,
( ) ( ) ( ) ( )( )1 2,  , , mSe t se t se t se t= …  – set of all links’ states at time t 

expressed in a numerical manner,
Φ ( ) ( )t R X tN K= ( )( )  – function determining in a binary manner the 

network state at time t, Φ ( ) ,t ∈{ }0 1 ,
Th	 –	 simulation time horizon,
te	 –	 time of event,
tfij	 –	 time when the jth failure of link ei occurs,
trij	 –	 time when the jth repair of link ei ends,
tsf 	 –	 time when in sth simulation a network’s failure state occurs,
smax	–	 number of simulation repetitions,	
sf(t)	–	 number of simulations which until time t ended with occur-

rence of the network’s failure state,
RN(K)(t) – reliability of a network with links and nodes repairable after 

failure.

The following assumptions were made in order to determine the 
network reliability using the proposed method: 

Model of network is an undirected stochastic graph.i	

The measure of network reliability is the probability that all ii	
nodes from specified set K are connected – K-terminal network 
reliability.

All links iii	 ei in the network can fail statistically independently of 
each other with known probability qi=1–pi, and the distribution 
of failure time of each is known. 

To obtain the formula for computation of network reliability iv	
RN(K), it is assumed that the nodes are perfectly reliable: pvi=1, 
and the links are unrepairable.

When determining the reliability v	 RN(K)(t) of a network with fail-
ing and repairable elements, all the links and nodes can fail statis-
tically independently of each other with known probabilities, and 
the distribution of failure time of each is known.

A failure of a node in the network causes a quasi-failure of all vi	
links adjacent to the failed node.

Each network link vii	 ei and node vj can be in only one of two states: 
operating or failure.

Repair of each element results in restoration of its original reli-viii	
ability.

3. Determination of reliability of a network with perfect 
nodes and unrepairable links

The goal of stage I of the analysis is to obtain the formula for 
computation of reliability of a network with perfect nodes and un-
repairable links. The factoring algorithm was used for this purpose. 
The formula RN(K) is obtained by reduction of the graph representing 
the network [16, 27]. The reduction process is based on a well-known 
principle of contracting and deleting of links which is recursively ap-
plied for all edges ei in graph G.
Examples of reduction for specified sets K are shown in Figure 1 
(a: |K |=|V |, b: |K |=2:{v1,v2}). 

4. Reliability of a network with imperfect and repairable 
links and nodes – π method

In stage II of the analysis we present the π method which 
takes into account the failures and repairs of links and nodes in 
the network. 

Because, according to assumption vii, each link ei can be only in 
one of two states, it was assumed that this state will be expressed in a 

Fig. 1. Examples of reduction according to the factoring algorithm
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binary manner and denoted xi(t). As a result of failures and repairs, the 
values xi(t) can change in time as follows:

	 ( )
1 –                
0 –                        

i
i

i

link e is in anoperating stateat timet
x t

link e is in a failure stateat timet


= 


	 (1)

and the set of states of all links in the network at any time t is writ-
ten as:

	 ( ) ( ) ( ) ( )( )1 2,  , , mX t x t x t x t= … 	 (2)

The following substitution for probability values pi and qi are 
made in formulas for network reliability (RN(K)) obtained according 
to the factoring algorithm:

	
( )

( )
          

1
i i

i i

p x t
q x t

 =
 = −

 	 (3)

Now, it can be noticed that after using formulas (1) – (3), the 
value of function Φ(t) = RN(K)(X(t)) in each case determines the net-
work state in a binary manner due to the fact that the connectedness 
of nodes from set K: 1 – K nodes are connected, 0 – K nodes are not 
connected, which will be written as:

	 Φ( ) ( ) ( )( ) 1            
0                 N K

operating stateof network at timet
t R X t

failure stateof network at timet
−

= =  −
 

(4)

It is an easy method for determining the network state at any time 
t for each possible case X(t) resulting from combination of states xi(t) 
of network links.

As each link ei connects two nodes located on its ends (these 
nodes are adjacent to link ei), the adjacency matrix (AM) for any net-
work can be written in the following form:

	
, ,

, ,

1, 2, , 
;           

1, 2, , 

i j i n

m j m n

a a
i m

AM
j n

a a

… 
= … 

=   = … … 

 



	 (5)

	
 

,
 

1                  

0    ’         
j i

i j
j i

if nodev is oneof two nodes adjacent tolink e
a

if nodev isn t oneof two nodes adjacent tolink e

−=  −
 (6)

Matrix AM will be used during calculation process to fastest find-
ing the numbers of links which are in a failure state as a result of 
failure of nodes.

Analysing the structures of links in various networks, it is easy to 
notice that each link ei which is adjacent to the failed node cannot be 
used to connect the specified set K of nodes. According to assumption 
vi, such a state is called a quasi-failure of the link. 

If nodes vk and vl are adjacent to link ei, possible cases of failure 
and quasi-failures of link ei are presented in Figure 2. 

The cases presented in Figure 2 cause:

2a: failure of link –– ei,
2b: quasi-failure of link –– ei,
2c: failure and simultaneously quasi-failure of link –– ei,
2d: double quasi-failure of link –– ei,
2e: failure and simultaneously double quasi-failure of link –– ei.

Each kind of link’s failure is assumed in calculations as a failure 
state of that link.

The numerical value sei(t) which describes the link’s state was 
introduced in order to allow for determining the number of failures at 
time t which cause the failure state of the link. If at time t the link ei 
is in operating state, sei(t)=1. Now, it was assumed that as a result of 
events, failures and repairs of link ei and nodes vk and vl occurring at 
time te, values sei(t) of link ei and other links adjacent to nodes vk and 
vl will change as follows:

if link –– ei at time te changes into failure state: 

	 ( ) ( ) 1i e i ese t t se t> = − 	 (7)

if node –– vk at time te changes into failure state: 

	 ∀ ∈( ) ∧ ( ) =( )⇒ >( ) = ( ) −( )=i i AM a se t t se tm i j k i e i e1 1 1, , ,   (8)

if node –– vl at time te changes into failure state:

	 ∀ ∈ …( ) ∧ ( ) =( )⇒ >( ) = ( ) −( )=i i m AM a se t t se ti j l i e i e1 1 1, , ,  (9)

if link –– ei at time te changes into operating state: 

	 ( ) ( ) 1i e i ese t t se t> = + 	 (10)

if node –– vk at time te changes into operating state:

	 ∀ ∈ …( ) ∧ ( ) =( )⇒ >( ) = ( ) +( )=i i m AM a se t t se ti j k i e i e1 1 1, , ,  (11)

if node –– vl at time te changes into operating state:

	 ∀ ∈ …( ) ∧ ( ) =( )⇒ >( ) = ( ) +( )=i i m AM a se t t se ti j l i e i e1 1 1, , ,  (12)

hence, from formulas (7) – (12) we obtain the set of possible values 
sei(t) for each link:

	

( )

1 –         , 
0 –           
1 –           ,   

      

i k l

i k l

i i k l

i

operating stateof link e and both nodes v v
failure stateof link e or nodev or nodev

se t failure stateof link e and oneof two nodes v v or
operating stateof link e and f

= −

     , 
2 –          , 

k l

i k l

ailure stateof both nodes v v
failure stateof link e and both nodes v v

 
 
  
 
 
 
 −  

(13)

The set of values sei(t) for all links in the network will be writ-
ten as:

	 ( ) ( ) ( ) ( )( )1 2,  , , mSe t se t se t se t= … 	 (14)

Fig. 2. Possible cases that caused a failure state and quasi-failures of link ei 
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Because each type of link failure is assumed in calculations as its 
failure state, the state of link xi(t) can be expressed in a binary manner, 
rewriting the formula (1) in the following form:

	 ( ) ( )
( )

1  1;      
0  1;           

i i
i

i i

if se t operating stateof link e
x t

if se t failure stateof link e
 − ==  − <

	 (15)

This proposed method of accounting for failures and repairs of 
links and nodes in the network (7) – (15) is called the π method (3.14) 
because:

the state of each link depends on –– 3 
elements: the link and two nodes ad-
jacent to this link,
there is only –– 1 possibility when the 
link is in an operating state: the link 
and both nodes adjacent to this link 
are in an operating state,
the state of each link is quanti-––
fied by a maximum 4 values: 
sei(t)∈{1,0, –1, –2}.

In this way, using the π method we de-
termine the state of link ei taking into ac-
count failures of the link itself and failures of adjacent nodes.

Using formula (15) we now also obtain the set of states X(t), and 
from formula (4) we can calculate function Φ(t). Hence, it is possible 
to determine the state of the whole network due to connections of 
nodes from set K, at imperfect and repairable links and nodes. 

5. Implementation of the π method – simulation model 
for estimation network reliability

The simulation method is implemented according to the diagram 
which for the network from Figure 1a is exemplary presented in Fig-
ure 3. Successive values of failure times and repair times are sam-
pled independently for each link ei and node vj (we used the method 
of inverse cumulative distribution function) [19]. These values are 
summed, thus making successive values of times tfij and trij. The proc-
ess continues until the simulation time horizon (Th) is reached, or until 
the network is in a failure state (Φ(t)=0). The nodes failures are ac-
counted for by means of quasi-failures of links according to the π 
method. 

The method of results analysis by using: RN(K) formula, matrix 
AM and π method is presented in Table 1. 

The presented method of sampling the time of events (failure 
and repair completion of the links and nodes) and of their analysis is 
applied in each simulation, which is repeated a specified number of 
times (smax). The obtained values of times tsf from all the simulations 
are then used to compute the reliability of a network with repairable 
links and nodes according to the formula:

	 ( )( )
( )

1 f
N K

max

s t
R t

s
= −  	 (16)

The simulation procedure was written as a computer program us-
ing the Matlab package. The program makes it possible to compute 
various measures of network reliability for the following cases:

perfectly reliable nodes (–– Nf =∅), 
failures and repairs of all network nodes (–– Nf = V),
failures and repairs of a chosen set of nodes (|–– Nf |<|V |).

In addition, any subsets of failing links and nodes can have dif-
ferent probability distributions of failure time and different values of 
repair rate.

6. Example and results of application of the method

The developed method was applied to compute the reliability of 
network presented in Figure 4. The model of this network in the form 
of an undirected graph consists of 36 links and 34 nodes. 

Reductions were made for the analysed network according to 
the method presented in stage I, and the formulas were obtained to 
compute three different reliability measures: RN(K=V), RN(K=2:{v1,v14}), 
RN(K=18:{v1 – v18}). Formulas are extensive and are not presented.

Obtained formulas were used in the simulation computations. 
The probability distributions of failure time and of repair of nodes 
and links, along with the parameters used in simulations, are pre-
sented in Table 2. In all cases, the exponential distribution of re-
pair probability and µ=10 [1/t.u.] (t.u. – time unit) was assumed for 
nodes vj∈Nf and links ei. The results of the computations for all cases 
from Table 3 are presented in Figures 5 and 6.

Table 1.	 Method of result analysis during simulation for link states from Figure 3 

No. t X(t) RN(K=V) Φ(t) = RN(K=V)(X(t))

1 t0 X(t0) = (1,1,1,1,1,1,1)
(p1p2p3p4p5+[p1p2p3p4q5+

p1p2p3q4p5]p6)p7
after applying (3):

(x1(t)x2(t)x3(t)x4(t)x5(t)+
[x1(t)x2(t)x3(t)x4(t)(1–x5(t))+

x1(t)x2(t)x3(t)(1–x4(t))x5(t)]x6(t))x7(t)

1 – operating state

2 t1 X(t1) = (1,1,1,1,0,1,1) 1 – operating state

3 t2 X(t2) = (1,1,1,1,1,1,1) 1 – operating state

4 t3 X(t3) = (1,1,1,0,1,1,1) 1 – operating state

5 t4 X(t4) = (1,1,1,0,1,0,1) 0 – failure state 
of network: t4=tsf

Fig. 3.	 Exemplary states of xi(t) of network links from Fig. 1a) during simula-
tion

Fig. 4. Structure of the analysed network



Eksploatacja i Niezawodnosc – Maintenance and Reliability Vol.19, No. 1, 2017 23

Science and Technology

Table 2.	 Probability distributions and parameters used in the simulations 

Network reliability measure Set of nodes which can fail Nf
Probability distribution of failure 

time for nodes vj∈Nf

Probability distribution of failure 
time for links ei∈E

I: 
RN(K=18):{v1-v18}

1)   Nf = ∅: 
all nodes perfectly reliable – Exponential:

λ=3⋅10-4 [1/t.u.]

II: 
RN(K=18):{v1-v18}

1)   Nf = ∅ –

Normal:
m=80 [t.u.]; σ=25 [t.u.]

2)   Nf = 16: {v19,…,v34} Weibull:
α=1.9; β=150 [t.u.]

3)   Nf = 16: {v19,…,v34} Weibull:
α=1.9; β=100 [t.u.]

III: 
RN(K=V)

1)   Nf = ∅ –

Weibull:
α=1.9; β=150 [t.u.]

2)   Nf = 16: {v19,…,v34} Weibull:
α=1.9; β=150 [t.u.]3)   Nf = V: {v1,…,v34}

4)   Nf = V: {v1,…,v34} Weibull:
α=1.9; β=100 [t.u.]

IV: 
RN(K=2):{v1, v14}

1)   Nf = ∅ –
Normal:

m=80 [t.u.]; σ=25 [t.u.]2)   Nf = 8: {v19,v20,v22,v23,
                v25,v28,v29,v32}

Weibull:
α=1.9; β=150 [t.u.]

3)   Nf = ∅ –
Weibull:

α=1.9; β=150 [t.u.]4)   Nf = 8: {v19,v20,v22,v23,
               v25,v28,v29,v32}

Weibull:
α=1.9; β=150 [t.u.]

5)   Nf = 8: {v19,v20,v22,v23,
                 v25,v28,v29,v32}

Weibull:
α=1.9; β=100 [t.u.]

links e11, e36 – Weibull:
α=1.9; β=100 [t.u.],

other links – Normal:
m=80 [t.u.]; σ=25 [t.u.]

Fig. 5.	 Dispersion of results depending on the number of repetitions: a), b), c) – case I according to Table 2, and network reliability: d) – case II according to Table 2

a) b)

c) d)
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Figures 5a, 5b and 5c present the dispersion of results from 10 
simulations depending on the number of repetitions (smax) of a single 
simulation. One can notice that the increase of the number of repeti-
tions smax from 1000 to 5000 significantly improves the convergence 
of results, but increasing smax to 10000 does not result in a signifi-
cant improvement. The average computation time increased from 
0.9 [s] to 2.6 [s], and for smax=10000 to 4.9 [s]. The computations 
were performed on a standard PC with a 1.5 [GHz] processor and 2 
[GB] RAM. Figure 5d presents the reliability of the analysed network 
RN(K=18:{v1–v18})(t) when the network nodes do not fail, and when the 
specified set of nodes Nf fails – case II in Table 2.

Figure 6a presents network reliability RN(K=V)(t) obtained for 
case III according to Table 2. Figure 6b presents another measure of 
network reliability RN(K=2:{v1,v14})(t), also obtained for various sets of 
failing nodes in the network and various probability distributions of 
failure time. In all cases, accounting for possible failures of a specified 
set of nodes or all nodes results in a reduced network reliability when 
compared to the situation with perfectly reliable nodes. For cases II, 
III and IV in Table 2, when the links and nodes failed, the calculation 
time at smax=5000 was in the 5 – 20 [s] range.

7. Summary and critical discussion

The developed computation method allows determination of the 
various reliability measures for networks with repairable elements. 
This method cab be used mainly for calculating structural  reliability 
of real water and gas supply networks as well as logistics and differ-
ent kind of telecommunications networks. Especially it can be useful 
for computer networks where links and nodes are completely differ-
ent elements but both have strong influence on network reliability. 

The developed model can also be applied to compute the reliability 
of other complex technical systems with specified (known) reliability 
structures which contain repairable elements.

The proposed π method allows for accounting for the failures 
of both links and nodes in the network by the introduction of quasi-
failures of links. After applying the π method, the formulas obtained 
according to the factoring algorithm which account only for the fail-
ure of links allow for an easy determination of the state of the whole 
network when both links and nodes fail. In the developed simulation 
model it is possible to use various probability distributions of failure 
time for any subsets of links and subsets of nodes which can fail (im-
perfect nodes). The failing elements can also have different values of 
repair rate. 

The results indicate that using the models with perfectly reliable 
nodes (Nf  =∅) leads to overestimating the network reliability. Taking 
failures and repairs of nodes and links into account makes the model 
better reflect failures occurring in real networks. Hence, the presented 
model can be more useful in the analysis of practical cases, giving a 
more credible assessment of network reliability. 

The inconvenience of the above method is the need to use the 
formulas obtained according to the factoring algorithm which, in the 
case of very complex network, are rather time-consuming to obtain. 
Further research can aim at searching for more effective network re-
duction methods and methods of obtaining formulas for sought net-
work reliability measures RN(K), e.g. by development of computer 
algorithms or modification of the method and determination of the 
network reliability without the need to use them. Another interesting 
direction for future research can be a modification of the method for 
use in directed networks.

Fig. 6. Network reliability: a) – case III, b) – case IV according to Table 2  
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