PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Numerical simulations of a simple refractive index sensor based on side-hole optical fibres

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this work the influence of the cavity parameters on optical losses of a simple intensitybased in-line refractive index sensor utilizing a micromachined side-hole fibre was studied by means of numerical simulations. To perform these simulations, the Authors used the finite-difference time-domain method. The proposed sensor setup consists of light source, micromachined optical fibre as a sensor head, and a detector which makes it low-cost and easy to build. The changes of the external refractive index can be, therefore, recovered by direct measurements of the transmitted intensity from which insertion loss values can be calculated. By changing geometry of the cavity micromachined into the side-hole optical fibre, it was possible to determine its influence on the final sensor sensitivity and measurements range. Based on the provided analysis of simulations results, a simple fibre optic sensor can be fabricated mainly for sensing external liquids refractive index for application in biochemistry or healthcare.
Rocznik
Strony
art. no. e143607
Opis fizyczny
Bibliogr. 29 poz., rys., wykr.
Twórcy
  • Institute of Applied Physics, Military University of Technology, 2 gen. Sylwestra Kaliskiego St., 00-908 Warsaw, Poland
  • Institute of Applied Physics, Military University of Technology, 2 gen. Sylwestra Kaliskiego St., 00-908 Warsaw, Poland
Bibliografia
  • [1] Grattan, K. T. V. & Sun, T. Fibre optic sensor technology: an overview. Sens. Actuator A Phys. 82, 40-61 (2000). https://doi.org/10.1016/S0924-4247(99)00368-4
  • [2] Zhou, X., Zhang, L. & Pang, W. Performance and noise analysis of optical microresonator-based biochemical sensors using intensity detection. Opt. Express 24, 18197-18208 (2016). https://doi.org/10.1364/OE.24.018197
  • [3] Rao, Y.-J. & Ran, Z.-L. Optic fibre sensors fabricated by lasermicromachining. Opt. Fiber Technol. 19 808-821 (2013). https://doi.org/10.1016/j.yofte.2013.07.016
  • [4] Wang, Y., Liao, C. R. & Wang, D. N. Femtosecond laser-assisted selective infiltration of microstructured optical fibres. Opt. Express 18, 18056–18060 (2010). https://doi.org/10.1364/OE.18.018056
  • [5] Pallarés-Aldeiturriaga, D., Roldán-Varona, P., Rodríguez-Cobo, L. & López-Higuera, J. M. Optical fibre sensors by direct laser processing: A review. Sensors 20, 6971 (2020). https://doi.org/10.3390/s20236971
  • [6] Kumar, A., Pankaj, V. & Poonam, J. Refractive index sensor for sensing high refractive index bioliquids at the THz frequency. J. Opt. Soc. Am. B 38, F81-F89 (2021). https://doi.org/10.1364/JOSAB.438367
  • [7] Pérez, M. A., González, O. & Arias, J. R., Optical Fibre Sensors for Chemical and Biological Measurements. in Current Developments in Optical Fibre Technology (eds. Harun, S. W. & Arof, H.) (IntechOpen, 2013). https://doi.org/10.5772/52741
  • [8] Liu, P. Y. et al. Cell refractive index for cell biology and disease diagnosis: Past, present and future. Lab Chip 16, 634–644 (2016). https://doi.org/10.1039/C5LC01445J
  • [9] Leal-Junior, A. G. et al. Polymer optical fibre sensors in healthcare applications: A comprehensive review. Sensors 19, 3156 (2019). https://doi.org/10.3390/s19143156
  • [10] Yan, X., Li, H. & Su, X. Review of optical sensors for pesticides. Trends Analyt. Chem. 103, 1-20 (2018). https://doi.org/10.1016/j.trac.2018.03.004
  • [11] Joe, H. E., Yun, H., Jo, S.-H., Jun, M. B. G. & Min, B.-K. A review on optical fibre sensors for environmental monitoring. Int. J. Pr. Eng. Man-Gt. 5, 173-191 (2018). https://doi.org/10.1007/s40684-018-0017-6
  • [12] Costa, G. K. B. et al. In-fibre Fabry-Perot interferometer for strain and magnetic field sensing. Opt. Express 24, 14690-14696 (2016). https://doi.org/10.1364/OE.24.014690
  • [13] Zhou, N. et al. MEMS-based reflective intensity-modulated fibreoptic sensor for pressure measurements. Sensors 15, 2233 (2020). https://doi.org/10.3390/s20082233
  • [14] Pevec, S. & Donlagic, D. Multiparameter fibre-optic sensor for simultaneous measurement of thermal conductivity, pressure, refractive index, and temperature. IEEE Photon. J. 9, 1-14 (2017). https://doi.org/10.1109/JPHOT.2017.2651978
  • [15] Stasiewicz, K. A., Jakubowska, I. & Dudek, M. Detection of organosulfur and organophosphorus compounds using a hexafluorobutyl acrylate-coated tapered optical fibres. Polymers 14, 612 (2022). https://doi.org/10.3390/polym14030612
  • [16] Pura, P. et al. Polymer microtips at different types of optical fibres as functional elements for sensing applications. J. Light. Technol. 3, 2398-2404 (2015). https://doi.org/10.1109/JLT.2014.2385961
  • [17] Marć, P., Żuchowska, M. & Jaroszewicz, L. R. Reflective properties of a polymer micro-transducer for an optical fibre refractive index sensor. Sensors 20, 6964 (2020). https://doi.org/10.3390/s20236964
  • [18] Marć, P., Żuchowska, M., Jakubowska, I. & Jaroszewicz, L. R. Polymer microtip on a multimode optical fibre as a threshold volatile organic compounds sensor. Sensors 22, 1246 (2022). https://doi.org/10.3390/s22031246
  • [19] Tian, Z., Yam, S. S. H. & Loock, H. P. Refractive index sensor based on an abrupt taper Michelson interferometer in a single-mode fibre. Opt. Lett. 33, 1105–1107 (2008). https://doi.org/10.1364/OL.33.001105
  • [20] Ran, Z., Rao, Z., Zhang, J., Liu, Z. & Xu, B. A Miniature fibre-optic refractive-index sensor based on laser-machined fabry–perot interferometer tip. J. Light. Technol. 27, 5426–5429 (2009). https://doi.org/10.1109/JLT.2009.2031656
  • [21] Wei, T., Han, Y., Li, Y., Tsai, H. L. &. Xiao, H. Temperatureinsensitive miniaturized fibre inline Fabry-Perot interferometer for highly sensitive refractive index measurement. Opt. Express 16, 5764-5769 (2008). https://doi.org/10.1364/OE.16.005764
  • [22] Enokihara, A., Izutsu, M. & Sueta, T. Optical fibre sensors using the method of polarization-rotated reflection. J. Light. Technol. 5, 1584-1590 (1987). https://doi.org/10.1109/JLT.1987.1075449
  • [23] Zheng, Y., Li, J., Liu, Y., Li, Y. & Qu, S. Dual-parameter demodulated torsion sensor based on the Lyot filter with a twisted polarization-maintaining fibre. Opt. Express 30, 2288-2298, (2022). https://doi.org/10.1364/OE.448088
  • [24] Jin, W. et al. Recent advances in spectroscopic gas sensing with micro/nano-structured optical fibres. Photonic Sens. 11, 141-157 (2021). https://doi.org/10.1007/s13320-021-0627-4
  • [25] Xie, H. M., Dabkiewicz, Ph., Ulrich, R. & Okamoto, K. Side-hole fibre for fibre-optic pressure sensing. Opt. Lett. 11, 333-335 (1986). https://doi.org/10.1364/OL.11.000333
  • [26] Bao, L., Dong, X., Shum, P. P. & Shen, C. High sensitivity liquid level sensor based on a hollow core fibre structure. Opt. Commun. 499, 127279 (2019). https://doi.org/10.1016/j.optcom.2021.127279
  • [27] Lin, H., Liu, F., Guo, H., Zhou A. & Dai, Y. Ultra-highly sensitive gas pressure sensor based on dual side-hole fibre interferometers with Vernier effect. Opt. Express 26, 28763–28772 (2018). https://doi.org/10.1364/OE.26.028763
  • [28] Taflove, A. & Hagness, S. C. Computational Electrodynamics - The Finite-Difference Time-Domain Method - 3rd Edition. (Artech House, 2005). https://us.artechhouse.com/Computational-Electrodynamics-Third-Edition-P1929.aspx
  • [29] Bird, T. S. Definition and misuse of return loss [Report of the Transactions Editor-in-Chief]. IEEE Antennas Propag. Mag. 51, 166-167 (2009). https://doi.org/10.1109/MAP.2009.5162049
Uwagi
This research was financially supported by the Military University of Technology under research project UGB 22-791.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-116821e4-39be-41e9-ac6b-60f48d6b3301
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.