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The main problem addressed in the paper is an idea of modification and generalization
of Root-MUSIC method. The algorithm is commonly used for uniform linear arrays. A
concept how to generaliże this methodfor non-uniform arrays is presented. An additional
parametric test is also proposed for the selection of signal roots. Selected results of shallow
water acoustic targeis location (in bearing), witn passive, linear array of hydrophones is also
presented. The data used were acquired witn an array situated in littoral waters, made and
tested at Marine Technology Centre. A short background of array processing methods,
especially subspace-based algorithms is included as well. Some important practical problems
are also shortly discussed.

INTRODUCTION

Passive bearing estimation of underwater acoustic targets has many advantages. It
involves, however, many complex tasks, when put into practice. Beside the technology, the
first is practical implementation of proper algorithms into software, which never is a routine.
Many detail problems are also involved with the selection of optimal values for varied
processing parameters. There is a place for introducing new, technology and research,
concepts as well. A job of manufacturing an underwater acoustic passive array has been taken
at Marine Technology Centre. The array, situated in Iittoral waters is still under tests. Anovel
research concept and some experimental results based on this job are presented in this paper.

l. SUBSP ACE-BASED APPROACH

When an array of N passive sensors receives wideband signal compound ot' M source
signals and white noise it is usually [3,5], for frequency m and any time t, modeled as:

x(t)=As(t)+n(t) (1)

In equation (1) x is N-dimensional complex vector of sensor signal amplitudes at narrowband
frequency m, n is noise part of x and s is M-dimensional vector of source signals complex
amplitudes. The (NxM) steering matrix A expresses the phase delays ot' mth signaI at n"
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sensor (m= l..M, n= l..N), and has a form (2) of M column steering vectors a(8m), where 8m is
a parameter that localizes the mth source.

A = [a(8[), a(82 ),... ,a(8M)] (2)
The steering vector a(8) for a linear array with sensor positions Yn is given by (3).

a(8) = [exp(- jky [ sin 8),... ,exp(- jky Nsin 8)Y (3)

k (=uYc) is the narrowband wavenumber and 8 is the bearing, relative to the array broadside,
of far field source. The spatiaJ correlation matrix R ot' the array signaj x is computed as:

R = E~XH}= ASA H+ (J2J (4)
E{) stands for expectation value, J is the unit matrix and (J2 is the power of white noise. The
signal and noise correlation matrices are defined respectively by (5) and (6).

S = E~SH} (5)

Q = E{nnH}= (J2J (6)

Exploiting the structure (4) and the fact that ASA'" is positive definite a standard
decomposition of R into two ortogonal subspaces can be made. (N-M) eigenvectors (EVs)
ortogonaJ to the columns of A have their eigenvalues (J2, are called noise EVs and span the
noise subspace. Others EVs (of the largest eigenvalues) span the signal subspace.
An experimental estimate ot' R is usually computed as the sample covariance matrix
expressed by (7). Snapshots x, (i= 1..K) of array signal are acquired within a time period ~T.

R=~tXiX~ (7)
K i~'

The eigenvalue decomposition (EVD) of ił is given by (8). L is a diagonal matrix of positive
eigenvalues sorted in descending order and the column ortonormal EVs form the matrix U.
Assurning for R the structure (4) the EVs can be split into signal EVs grouped in matrix F
and noise EVs forming the matrix G.

ił = ULUH (8)
U = [u" ... .uj,, uM+" ... ,uN]= [F,G] (9)

2. MODIFIED ROOT MUSIC

The basie formula exploited by noise subspace methods, like MUSIC, is the
ortogonality (10) between the source steering vector and the noise subspace.

GHa(8)= O (lO)
Assuming at this moment a uniform linear array (ULA) with sensor separation d, the steering
vector a(8) can be expressed with the use of complex variable z:

a(8)=a(z)=ll,z,z2, ... ,zN-'J (lI)
z = e -jkcbin8 (12)

Taking the square norm ot' (10), after some manipulations [2] we get (J is the exchange
matrix hm=Im,N-k+I):

aT (z)JGGHa(z) = O (13)
what is in fact the rooting problem of a complex polynomial p(z) of rank r=(2N-2) and
coefficients b, given by (15) and (16), for i=LN-1.

2N-2
p(z)= aT (z)JGGHa(z)= L,bkzk

k~()

(14)
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M N-i N N-i

bN-1+i =-I.I.UnI1lU~1+i.m = I. I.Ul1mU~+i.11l=b~_I_i
m=M+1 n=1

(15)

(16)
111=\ n=\

Half of the roots of p(z) lying inside the unit circle are considered farther (the other half has
the form of llz*). As the signal roots should lie on the unit circle (12), MIargest of al! the
roots (the nearest to the unit circle) are identified as them. The source positions em are
determined by the phases <\lmof those largest roots.

sine =-~
111 kd

Such a selection is a standard Root-Music procedure [3,4]. Sorting the (N-l) roots Zmwith
respect to the modulus in descending order, we get the signal roots indexes to be m=1..M. If
the Mth root has its modulus e.g. pM=0.92 and the (M+ l )st, PM+I=O.Sl such a selection
involves no doubts. However, if pM=O.S95 and PM+I=0.S91 it cannot be guaranteed that the
candidate source is located at SM rather than at SM+I. That is why an alternative test is
proposed for the selection of signal roots. Let us take into consideration all the roots lying
outside the circle of radius p and stil! inside the unit circle. p can be kept fixed (e.g. p=O.S) or
varied (e.g. p=O.95pM). If the number of these roots is L (M:::;L:::;N-I)we declare al! the roots
ZI...ZL as the candidate signal roots. Taking any M-element subset {e}i of {SI,... ,eL} we test it
using a function g( {8 h). A parametric test [1,3] based on deterministic maximum likelihood -
DML (1 S) or weighted subspace fitting - WSF (19) is proposed. A set of candidate source
positions {e} p that maximizes the function gO is then claimed as the source locations.

gDML({el) = Tr(PAR)

gWSF({e l) = Tr(PA FWF H)

(17)

(18)

(19)
PA is the projection matrix (20) onto the subspace span(A) which is determined by the
candidate source positions {e li. w is a weighting matrix [6,3,1] that can also be set W=I.

PA =A(AHAtAH (20)
Now let us assume an arbitrary linear array. Without losing the generality we can claim

the sensor locations Yn in equation (3) as rational numbers. In that case there exist such a
largest distance d that each sensor position is expressed as an integer multiplication of d. This
approach is equivalent to an ULA with gaps (empty nodes - without sensors) and is
impractical if d is very smalI. However real arrays are design as more or less regular and if the
number of gaps is not too high comparatively with the number of sensors, proposed approach
seems reasonable. The problem is now to compute the polynomial coefficients. The difference
Iies in the shape 01' steering vector (lI), which has now no element z?", if n is the place of a
gap. As a consequence in equation (16), in the internal sum, N stands for the number of al! the
array nodes (sensors and gaps) and the sum goes only through such pairs 01'nodes (n, n+i) that
are sensor-filled. If there are no such pairs a coefficient equals zero. For a polynomial
computed in that way typical Root-MUSIC actions are proceeded farther.

3. EXPERIMENTAL RESULTS

At fig.I a scenario with rwo shallow water targets located with the use of spectral
MUSIC by an ULA of 21 hydrophones is presented. Forward-backward spatial smoothing
(FBSS) of rank 5 was applied. The relative processing frequency width was y=0.04 (y is
defined as: 1'req_width*array_length/sound_ vel and should be much less than I), the
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observation time-Jength ,-1T=5s and the time-band-width-product (without FBSS) K=lO. For
the same scenario computations were made with the use 01' Root-MUSIC. Five roots (their
sine) 01' the largest magnitude are shown. In boJd are typed signal roots chosen with WSF test.
The magnitudes of the roots are typed in brackets.
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Fig.l. Musie spectrum for two far field targets scenario.

1. y=0.04, ,-1T=5s, K=lO. Signal roots identified with WSF test ~ (1,2).
-0.593 (0.95) 0.553 (0.78) -0.770 (0.78) -0.416 (0.76) -0.917 (0.74)

Another scenario, for two targets as well, is shown below. Both lines 01' results concern the
same time and frequency, but different processing parameters, which are specified ey, ,-1T,K).
One can see that conventional roots selection points out different roots (1,2) each time and
parametric test chooses the same source Jocations.
2. y=0.04, ,-1T=5s, K= !O. Signal roots identified with WSF test ~ (l ,5).

0.636 (0.93) -0.484 (0.88) -0.213 (0.86) 0.571 (0.82) -0.005 (0.82)
3. y=0.08, ,-1T=3s, K=12. Signal roots identified with WSF test ~ (1,2).

0.010 (0.92) 0.643 (0.92) 0.464 (0.80) 0.181 (0.77) 0.319 (0.76)
In a number 01' other tests made it was found that if the signal roots magnitude were close to
unity (the data were well fitted to the model) the parametric test led usually to the same
results as the conventional selection.
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