
Zezwala się na korzystanie z artykułu na warunkach
licencji Creative Commons Uznanie autorstwa 3.0

1. Introduction

Development of autonomous robotic telescopes poses consi-
derable challenges concerning reliability and maintainability
of the supervised system. Devices designed with the aim of
deployment in distant isolated locations, with possibly harsh
and changing environmental conditions, require special means
of supervision and maintenance to ensure their constant and
infallible operation. Ivanescu et al. [6] presented some challen-
ges of the telescope working in such conditions, which resul-
ted in the need for constant supervision by a human operator.
The demand for development of modern systems that allow
easy and automated supervision or maintenance has recently
been reported by Marchiori et al. [11]. Importantly, propo-
sed solutions have to be lightweight in terms of computatio-
nal resources as the performance of the telescope controller
cannot be hindered during normal operations. Moreover, the
need for a simplified graphical user interface for the control
of the telescopes by the final user has also been reported, e.g.
Abareshi et al. [1] with growing interest in taking advantage
of modern web-based technologies as used by Sadeh et al. [12]
or Edwards et al. [3]. Satisfaction of all these requirements
introduces significant difficulty for any team working on the
development of automated robotic telescopes.

In this paper a novel framework for software architecture
designed to ease the development and maintenance of autono-
mous telescopes is presented. Recently, this architecture has
been successfully employed in the SkyLab laboratory establi-
shed at the Poznan University of Technology in 2018. The pro-

Autor korespondujący:
Dariusz Pazderski, dariusz.pazderski@put.poznan.pl

Artykuł recenzowany
nadesłany 21.11.2022 r., przyjęty do druku 05.12.2022 r.

System Architecture for Development and
Supervision of Robotic Astronomical Telescope
Patryk Bartkowiak, Radosław Patelski, Marta Kwiatkowska, Dariusz Pazderski
Poznan University of Technology, Institute of Automatic Control and Robotics, Piotrowo 3a, 60-965 Poznan, Poland

Abstract: In this paper the novel control and communication scheme designed to ease the
development and maintenance of the robotic astronomical telescope device is presented. The
proposed solution allows the user to remotely access any signal in the controller of the telescope
without imposing any additional overhead during telescope operation. The implemented scheme
can be used by both an automated control system and human operators for easy supervision,
control, and maintenance of the device.

Keywords: Embedded computer control systems and applications, Remote servicing, Tele-maintenance, Condition Monitoring, Fault detection and diagnosis

gresses in development of the SkyLab were already reported
by Kozlowski et al. [8]; Krysiak et al. [10]; Kozłowski et al. [9].

The proposed framework takes advantage of an internal com-
munication scheme, which makes it possible to monitor every
single signal in the software realization of the telescope con-
troller without affecting the real-time operation of the control
loop. Multiple client applications able to communicate with
the controller were implemented using this approach. They
include services used to automatically synchronize the clock
of the controller, acquire and store the data produced during
the operation of the telescope, and control of the telescope
using a graphical interface, either for maintenance or regular
observations. The use cases presented in this paper confirm
the wide applicability of the proposed framework.

The rest of the paper is organized as follows. Section 2 pre-
sents the overall structure of the discussed telescope system.
In Section 3 details of the internal communication scheme are
described. Section 4 presents the client application designed
mainly for astronomical operations and Section 5 describes the
client application for maintenance and development. In Section
6 the example of some possibilities of the proposed system is
presented. Section 7 concludes the paper.

2. Telescope System Architecture

The considered software architecture was designed for a set
of astronomical telescope mounts currently developed at the
Institute of Automatic Control and Robotics. The discussed
collection consists of autonomous robotic mounts for a single
telescope of diameter of either 0.5 m or 1 m. Currently, all of
the SkyLab mounts work under the same framework presen-
ted in this paper. The example of the mount used in SkyLab
is given in Fig. 1.

The developed solution consists of several interconnected
devices including Mimas – Spartan 6 FPGA, microcontroller
(MCU) STM32H743ZI2 with the high performance CPU ARM
Cortex-M7 operating up to 480 MHz, an electronic security
system with energy dissipation function (UZE), the compu-

43

Pomiary Automatyka Robotyka, ISSN 1427-9126, R. 26, Nr 4/2022, 43–51, DOI: 10.14313/PAR_246/43

ter Raspberry Pi 4 (RPI) and the miniature NTP/PTP time
server NTS-pico3 (GPS). The architecture of this system, with
all channels of data exchange between the nodes, is graphically
presented in Fig. 2.

2.1. Hardware-software structure
The STM32 is a main real-time controller which is responsible
for performing low-level tasks such as processing data, compu-
ting trajectory, controlling motors and overviewing all external
devices to ensure faultless operation. The control system loop
is designed to work with a 10 kHz frequency for both axes
of the telescope mount. Using the I2C interface, the STM32
communicates with the UZE module to obtain the tempera-
ture and current measurements of the motors and to adjust
a supply voltage or energy dissipation function settings. The
main controller program is written in a standard C/C++ pro-
gramming language. Here, the novel programming framework
introduced by Gawron and Kozłowski [4] was employed to
manage the code structure and ensure the exchange of infor-
mation between separate modules. The FPGA is used mainly
for signal processing and gathering of measurements, including

telescope positions, status of encoders, supply voltage and
current of the drives, which later are sent to the main STM32
controller. The communication between FPGA and STM32 is
made possible by employing a fast SPI interface with STM32
in a role of a main device. FPGA is also tasked with exerci-
sing custody over drives controller as a watchdog and, in case
of failure, interrupt PWM signals which control the drives.
The RPI runs Linux-based Raspbian operating system with
realtime Preempt RT kernel modified to incorporate support
of the Precise Time Protocol (PTP). The real-time system
is crucial to guarantee a minimum latency between external
interrupts and the interrupt handling, and consistent beha-
vior of thread scheduling. Due to its networking capabilities,
the RPI platform serves mainly as a relay for communication
between the STM32 controller and external client applications.
The communication between STM32 and RPI through the
SPI interface is adjusted to use the ASTCom communication
library, which is described in detail in Section 3. As the RPI
is the only computer-scale node in the considered system, it
also hosts several of those client services. The Relay program
provides service support with the SPI interface and transmis-
sion of data between STM32 and external clients, including
a Virtual Star Server (VSS), Database Relay, Robot Supervi-
sor Panel (RSP) or Time Synchronizer (TimeS). The task of
Database Relay is to intercept the data streaming from the
STM32 and save all transmitted data to an external database
for future reference. The Virtual Star application is designed
to ensure a proper operation of the telescope in astronomical
observation tasks, while diagnostic operations can be carried
out through a multi-function web application RSP. The RPI
communicates with the external world by Ethernet connection,
taking advantage of Websocket or HTTP protocol.

2.2. Time synchronization
In a case of astronomical observations, an availability of relia-
ble clock source is a crucial requirement to obtain a high level
of tracking accuracy, as it is vital to calculate a position of an
observed object in a given time instant. Thus, a custom time

Fig. 1. The mount carrying a 0.5 m class telescope (PlaneWave CDK20
0.51-m f/6.8 Corrected Dall-Kirkham with resolving power 0.28 arcsec
and camera FLI PL16803 CCD 4096 × 4096 9 μm pixels with resolution
0.54 × 0.54 arcsec/px and field of view 0.61 × 0.61 deg) used in SkyLab
Rys. 1. Montaż z teleskopem klasy 0,5 m (PlaneWave CDK20 0.51-m f/6.8
Corrected Dall-Kirkham z maksymalną zdolnością rozdzielczą 0,28 arcsec
oraz camerą FLI PL16803 CCD 4096 × 4096 9 μm piksele o rozdzielczości
0,54 × 0,54 arcsec/px z polem widzenia 0,61 × 0,61 deg) stosowany
w SkyLab

Fig. 2. Software, hardware and communication architecture of
the telescope system
Rys. 2. Oprogramowanie, osprzęt i architektura systemu komunikacji
w układzie teleskopu

44

System Architecture for Development and Supervision of Robotic Astronomical Telescope

P O M I A R Y • A U T O M A T Y K A • R O B O T Y K A NR 4/2022

synchronization module was developed using a proposed com-
munication scheme. To this end, a GPS module is employed,
which is connected to the RPI using an Ethernet standard.
This enables the RPI to periodically update its internal system
clock through the PTP protocol, as described in Cochran et
al. [2]. However, in order to employ the PTP synchronization,
the system kernel has to provide control of the hardware clock
and packet timestamping at the hardware or software layer,
which is ensured by the aforementioned kernel modifications.
Once the synchronization of its system clock is performed, the
RPI can be treated as the main source of time measurements
in the considered system. By taking advantage of this notion,
the program TimeS reads the synchronized system timestamp
of the hindmost full second and transfers it in the UTC format
to the STM32 using the proposed ASTCom approach, thus
updating the internal clock of the telescope control system. In
order to avoid time diverging, an additional one 1PPS (a pulse
per second) signal is routed directly from the GPS module into
one of the digital inputs of the STM, which enables the control
system to precisely assign the received UTC timestamp to the
time instant marked by the 1PPS pulse.

2.3. Database
Data storage during the operation of the automatic control
system is an element of high importance, as it was emphasized
by Story et al. [13]. In particular, thanks to recorded signals,
it is possible to conduct an in-depth analysis of the conducted
experiments, as well as to diagnose the cause of the possible
system defects based on the data collected over a wide time
horizon. An open-source time series database InfluxDB instal-
led on an external server with plenty of storage space is used
for gathering and saving data from the controlled system. As
has been mentioned earlier, the program Database Relay, run-
ning on the RPI machine, catches streamed signals and saves
data into the database using InfluxDB’s custom command
language similar to mySQL by the HTTP protocol. An arbi-
trary choice of stored data is given to the user of the telescope
system and these can be defined using the RSP and VS appli-
cations, both of which are equipped with a user-friendly GUI.
To access the database and download the data series, one can
make use of the HTTP protocol directly or take advantage of
a custom application that works as a module of the MATLAB
environment. Any calculations, visualization, or data proces-
sing can also be done in the MATLAB program.

3. Communication Library Design

In order to facilitate the communication and data exchange
between various nodes of the telescope environment, the novel
communication protocol called the Astronomic Communi-
cation Library (ASTCom) was proposed and implemented.
The library provides an interface for serialization and real-
-time exchange of data between various devices through the
Websocket protocol. The serialization itself is performed using
a custom format similar to the well-known MessagePack format
enhanced with several extensions to accommodate features of
the proposed scheme. Mainly, the possibility to dynamically
configure the set of exchanged data at run-time is introduced.

The basis of the ASTCom library design is the system of
variable and class registration, which allows the library to
discover each and every desired variable declared in the code
of the telescope controller. To this end, a conceptual ASTVa-
riable is defined as any variable or class that can be serialized
by the ASTCom library. Serialization procedures for multiple
basic types (e.g. integer, float, string, array, etc.) are predefined
by the library itself. Moreover, ASTVariable can also repre-
sent a function with an arbitrary signature. In order to enable

serialization of custom defined classes, the special macro AST_
VARIABLE_DEFINE is declared which, when included in the
class definition, declares a set of functions used to serialize and
deserialize all variables of the chosen class. The types of varia-
bles and a proper way of their processing are discovered auto-
matically by the library. Thus, once a class is defined, a call
to a single function automatically serializes an entire content
of its object, including any member objects that were imple-
mented taking advantage of the AST_VARIABLE_DEFINE.
A globally accessible Collection class is then defined, which
can be called to recursively scan and register any object of
the ASTVariable type. During this process, information about
name, type, address of data in physical memory and addres-
ses of serializing and deserializing functions of the object are
stored in memory of the Collection singleton. Due to to the
recursiveness of this operation, it is sufficient to register only
the top level object, provided that all member objects are also
of the ASTVariable type. Thus, if any change in the struc-
ture of the software is made, there is no requirement for any
additional modifications outside the affected classes, as their
proper registration is automatically ensured by the top level
class. It is of major significance that all of these operations are
performed either at compile time or on the device startup and
does not in any way slow down main computation tasks exe-
cuted online by a CPU. Once the initial registration of objects
is performed, the current state of any signal in the telescope
can be easily obtained by invoking the Collection object with
name and type of the required variable.

In order to make use of the proposed approach, two sepa-
rate modules are implemented – the Endpoint module, to be
employed on board of the telescope, and the Client module,
run in each of the client applications. Both modules are derived
from the single Interface class. These two are then used to esta-
blish communication between various devices in the ASTCom
network. To this end, a series of hard-coded ASTCommands is
defined and used to exchange basic commands between devices.
These are in nature similar to functions of the Modbus proto-
col and are first used to establish a formal connection between
the nodes, during which version compatibility is verified and
access rights are granted through password verification. Each
connection is represented in both parties by a separate Con-
nection class object, which stores all information necessary to
carry on the communication. It has to be noted that multiple
Client devices can be simultaneously connected to a single
Endpoint and their number can be limited by the Endpoint to
reduce the performance impact. Once the connection is defined,
the Client uses proper ASTCommands to query the Endpo-
int device and request it in order to define new ASTMessages
– virtual structures consisting of several ASTVariables with
a unique ID number assigned. Once the Endpoint receives such
request, it queries the Collection for desired entries and copies
pointers to serialization functions. Hence, once the ASTMes-
sage is defined in the Endpoint, it is directly available for use,
and no additional overhead is created beside brief configuration
of the messages, which can be done before the proper start of
operation of the telescope system. On the Client side, the newly
defined ASTMessage is also bound to a chosen locally defined
variable of the same type. It is noteworthy that as the seria-
lization procedures of the basic types are hard-coded into the
library, the Client device is not required to have counterparts
of the defined data in its source code, as they can always be
built in the runtime from objects of basic types. On both sides,
defined ASTMessages are stored in the MessageRegister class
object, with a notion that the Endpoint defines a single register
used by all connections, while the Clients assign separate sto-
rage for each connection. The process of ASTMessage definition
can be seen as creating of a bond between the local and remote
variables on two devices. In case of an ASTMessage containing

45

Patryk Bartkowiak, Radosław Patelski, Marta Kwiatkowska, Dariusz Pazderski

an ASTVariables representing the function, the bound is made
between the function on one device and variables used as its
arguments on the other. Such messages containing references
to a function can be transferred only in one direction, as argu-
ments can only be written to functions. A graphical scheme
showing an example of this binding is given in Fig. 3.

Two modes of data exchange are supported by the ASTCom
library – the private channel communication used to transfer
data between two devices and the stream channel used by the
Endpoint to broadcast large amounts of data to all connected
clients. All of the aforementioned ASTCommands are also
sent through the private channel. Importantly, the ASTCom
library does not specify a precise transport layer of the chan-
nels, and thus the communication can be carried out using
several medias, including Websocket, TCP/IP or SPI commu-
nication with both channels supported by a single connection
or separated between two independent routes, e.g. two separate
Websocket connections. The Client can request to exchange the
data through one of these communication channels. In case of
the private channel, the Client requests a single exchange of
data of a chosen ASTMessage in the desired direction – the
data can be both read from or written to the telescope. Once
the command is carried out, the values of the bound variables
are identical on both devices. If the considered ASTMessage
contains ASTVariables representing the function, it is remo-
tely invoked, which can be used to control the behavior of the
telescope controller.

While the private channel is designed mainly to control the
telescope by the user or the supervisor, the stream channel
is intended for constant acquisition of information about the
state of the adevice. To this end, the Client may request the
Endpoint to start recording chosen ASTMessages with a desi-
red frequency. Currently, on the considered setup of the tele-
scope controller, the recording with a frequency up to 10 kHz is
possible. The Endpoint executes such a command, by cyclically
serializing the value of requested variables into a local predefi-
ned buffer. Once a certain volume of data is acquired, the data
is flushed and sent to all connected Clients, which receive the
packets containing the amassed record of state of the telescope
in the previous time instants. Importantly, Clients may bind
the received data to some custom callback functions and this
way process each sample of data separately upon arrival. Thus,
a significant amount of data can be exchanged between devi-
ces to allow constant monitoring of the telescope performance.

The proposed approach was first implemented in C++ code,
as this is the language of the main controller of the telescope.
To enable support of various client applications, the Client
class with all necessary dependencies was later ported into
JavaScript (using LLVM/Clang-based Emscripten compiler),
pure C and C# (using p/invoke feature).

4. Automated Control System

In order to enable the user to interact with the telescope and
perform standard astronomical calculations, the automated
control VirtualStar (VS) system was developed. It is respon-
sible for real-time data acquisition and processing (e.g. axes
states are continuously monitored) and, most importantly, it is
a complex tool for calculation of desired telescope trajectories
based on the movements of celestial objects. All these compu-
tations are possible with the use of commonly known astro-
nomical libraries (SOFA, SGP4) as reported by Vallado et al.
[14]; Hohenkerk [5]. Moreover, this software is responsible for
management of the graphical presentation layer and processing
of user requests. In order to ensure full system scalability and
security in data storage, the VirtualStar system design consists
of two separate subsystems (shown in Fig. 2 as the VSS and
VSC modules). C# and .Net Core 3.1 tools were chosen to
implement all subsystem components, including open source
astronomical libraries – nuget packages written as wrappers for
C++ source tools. The server-based subsystem part has been
built specifically for the linuxarm distribution, while the client
part is only available as the Windows application.

4.1. VirtualStar Server
The basis of the VirtualStar Server (VSS) structure is the
ASTCom Client module which enables the exchange of the
current state of any signal processed by the STM32 controller.
Directly at startup, the ASTMessages are defined according to
the rules specified by the ASTCom modules. A custom JSON-
-based configuration file contains a set of variable and function
names paired with specific ASTCom library signals, which are
used to properly configure the connection. Then, after a suc-
cessful connection, each signal is transferred to the graphical
presentation layer or sent to other subroutines within the VSS
module, such as the kinematic calibration module (known as
pointing model), for feature control tasks of the telescope sys-
tem. The computation and data preparation are completely
independent of the telescope mechanics, making it possible, for
example, to continuously provide trajectory samples while trac-
king satellites without waiting to reach a previous point. Con-
nected to the ASTCom Endpoint, VSS takes advantage of the
private communication channel to query the Endpoint device
and request it to perform the following commands: initialize/
start/reset trajectory, getting a free buffer space, rotation aro-
und the horizontal axis (control of the altitude angle), rotation
around the vertical axis (control of the azimuth angle), and
sending next trajectory positions. In addition, using this mode,
it also reads signals considered to be the general state of the
device: telescope positions from encoders (instrumental alti-
tude and azimuth angles), operating state, status and potential
errors of each axis, and current time measured in microseconds.
Meanwhile, the stream channel communication is used by the
VSS to receive continuous tracking errors data with a speci-
fied frequency. Then, these position errors are stored in inter-
nal data arrays until they are forwarded to the VirtualStar
client’s presentation layer, described briefly below. It should
be noted that both the mount driver and ASTCom library
process requests synchronously, while the VirtualStar system
handles all commands fully asynchronously. This means that
at the VSS level it was necessary to include a synchronization

Fig. 3. Example of variable binding in ASTCom. Note that function
reset() is called without any argument and the remote variable int pos
is used to invoke a local callback function. Variables float tau and
float var4 can be transferred in both directions
Rys. 3. Przykład łączenia zmiennych w ASTCom. Zauważyć można, że
funkcja reset() wywoływana jest bez argumentów, a zdalna zmienna int pos
wykorzystywana jest do wywołania funkcji lokalnej. Zmienne float tau oraz
float var4 mogą być przesyłane w obu kierunkach

46

System Architecture for Development and Supervision of Robotic Astronomical Telescope

P O M I A R Y • A U T O M A T Y K A • R O B O T Y K A NR 4/2022

module, thanks to which overloads and communication errors
were avoided. It is a simple mutex-based implementation that
always passes only one thread to the requesting function and
holds all others until it is released.

4.2. VirtualStar Client
The user interface of the VirtualStar is designed as a stan-
dalone desktop VirtualStar Client application based on the
Windows Presentation Foundation (WPF) framework and .Net
Core 3.1. Its basic structure consists of the background com-
munication layer and the graphical user interface with data
presentation features. The exchange of data between the VSS
and the VSC is performed on a separated communication layer
using a Websocket protocol. All high-level application com-
mands inputted by the user through the graphical layer are
immediately converted to messages in JSON format and sent
to the VSS, where they are serialized to particular commands
recognized by the mount driver. Once a command is sent to the
VSS, the VSC waits for the response stating that the command
was correctly classified, executed, and completed successfully.
Furthermore, the communication with the VSS is kept active
by using a watchdog, which informs about any possible gaps
in sending requests even though the Websocket state is still
open. By applying a continuous time synchronization with the
mount driver, both STM32 controller and VirtualStar subsys-
tems operate in the same clearly defined time domain. Thus,
all discrete points approximating the desired trajectory are
fully synchronized and the motion actions are performed with
a valid coordinates conversion time.

The graphical user interface layer (Fig. 4) shows the cur-
rent coordinates as instrumental positions in the horizontal
system (based on encoders values) (1), as well as current astro-
nomical coordinates, both in the horizontal and equatorial
systems (2). The last item in the vertical stack is the field for
the input of the slewing targets (3), defined in any coordinate
system. Other functionalities of the system (4) include: swit-
ching to a passive or active state, starting or stopping sidereal

tracking, sending TLE orbital elements data for satellite trac-
king, monitoring operations of the entire system and reacting
to possible errors and faults, preparing a file for the calculation
of pointing model coefficients, and generating an automatic
observations program.

5. Web Based Human Interface

The web application called the Robot Supervisor Panel (RSP)
was created to facilitate the development and testing of the
telescope system and to enable the designer to interact with the
system in a simple and easy way. The main focus of the RSP
is given to diagnostics, parameter tuning, online visualization
with signal processing, and the possibility of conducting expe-
riments for the telescope development and maintenance. The
application is written using standard web development tools,
including Hyper-Text Markup Language (HTML), Cascading
Style Sheets (CSS) with Leaner Style Sheets (LESS) and Java
Script (JS). Additionally, the JS front-end framework Vue.js is
used for simplification of the design process and maintenance
of the code. The most significant advantage of this framework
is the reactivity feature. Namely, after any change of a reac-
tive state, the interface structure is updated automatically.
Moreover, this framework supports the modular structure of
the application, which enables to dynamically modify the page
depending on data received from the telescope system and the
user’s interaction.

5.1. Communication with the telescope system
The main target of RSP is an exchange of information with
the telescope system by taking advantage of the ASTCom
communication library. The RSP interface is divided into seve-
ral panels, each responsible for a different functionality. The
first panel, called Board, can be used to initiate a connection
with the telescope system. Once the connection is successfully
established, the application queries the telescope controller

Fig. 4. VirtualStar graphical user interface (a color inversion is applied to the image for readability)
Rys. 4. Interfejs graficzny aplikacji VirtualStar (dla zwiększenia czytelności zastosowano inwersję kolorów na ilustracji)

47

Patryk Bartkowiak, Radosław Patelski, Marta Kwiatkowska, Dariusz Pazderski

for a list of all available variables which are then separated
into three types: streaming signals, parameters, and executa-
ble functions. An internal structures corresponding to these
remote variables are then dynamically created to be used in
further processing. These dynamically defined variables are
used to exchange data with the telescope controller. It should
be noted that for writing, reading, and streaming requests,
the RSP takes advantage of a private channel to communicate
with the Endpoint, and streaming channel to receive streaming
data of requested signals.

5.2. Monitoring
The Board tab also shows all basic information about the
device, including connection status, telescope status, and possi-
ble errors. The designed layout allows the user to keep an
eye on the device and connection status without much effort.
A full overview of all statuses and errors for each module of
the telescope system can be found on the Diagnostics tab. In
this tab, the user is able to check states of low-level control-
ler, motors or a trajectory status. The card Signals presents
remote variables available for streaming and is responsible for
defining commands for a stream of chosen signals with a fre-
quency up to 10 kHz that is equal to the sampling frequency
of the main controller. The Plot card, as the name suggests,
is used to visualize received data of streamed variables. More-
over, an additional tab called Compute is provided, which ena-
bles the user to perform algebraic calculations using streamer
signals, the results of which can be later displayed in Plot tab.
Significantly, each card offers a possibility to save its current
state to a local configuration file, which can be later loaded to
restore all settings with just a one click, e.g. if there is a need
to recreate a past experiment.

5.3. Adjusting the control system
Using the Parameters card, one can easily read and modify
the parameters values of the telescope system to perform the
controller tuning. During the tuning process there is no need
to restart the system to apply new settings and this process
can be done online, while the telescope executes the ordered
task. The online browser of signals received from the control-
ler helps to manually tune up parameters to obtain the requ-
ired performance of the control system for various conditions.

5.4. Control and experiments
The Input card enables to send predefined control commands
like start, stop, or reset, and custom commands to remotely
execute functions with given arguments. From this panel the
user is also able to define a trajectory for each axis by giving
a mathematical formula dependent on time and additionally
specifying experiment duration. This function of the RSP has
been used for experimental validation in Section 6.

6. Experimental Validation

In order to present the practical possibilities of the proposed
software framework, the experiment was performed using the
real telescope system operating in SkyLab. The experiment
was conducted for a whole-night tracking of drifting sinusoidal
trajectory specified for the single axis of the telescope with an
average speed of approximately 0.0095 rad/min that resulted
in an axis covering the distance of 6.8 rad in 12 h. Data acqu-
isition was carried out throughout the experiment with a fre-
quency of 1 kHz. The change of axis position from the start of
experiment, motor current, and position tracking error were
chosen for recording. Notably, all data was gathered directly
from the drive controllers and visualizes the performance of
the mount itself irrespectively from properties (e.g. resolving
power) of the optical part of the telescope. Due to the sim-
ple character of the desired trajectory, the RSP module was
used for its generation. Alternatively, VS application could be
employed to perform the experiment with a trajectory corre-
sponding to movement of some celestial objects. The database
was used for online storage of acquired measurements. Signifi-
cantly, the experiment was conducted remotely and no kind of
human supervision was required throughout the experiment.
The results of the experiment are given in Fig. 6.

In Fig. 7 a zoomed view of only the first two seconds of the
experiment with full resolution of 1000 samples per second is
given. Notably, both these figures were created using the same
data from the same experiment. This exposes the possibilities
of the proposed solution to monitor the performance of the
telescope in different time scales while preserving high time
accuracy even for long acquisition periods. In particular, one
can distinguish different dynamic effects visible in Fig. 6 and 7

Fig. 5. Example views of different tabs of Robot Supervisor Panel web application
Rys. 5. Przykładowe widoki w różnych zakładkach przeglądarkowej aplikacji Robot Supervisor Panel

48

System Architecture for Development and Supervision of Robotic Astronomical Telescope

P O M I A R Y • A U T O M A T Y K A • R O B O T Y K A NR 4/2022

Fig. 6. Data obtained during the whole experiment
Rys. 6. Dane uzyskane w trakcie całego eksperymentu

– vibrations visible in the wider time horizon are presumably
caused by the presence of cogging torque due to the electro-
mechanical structure of the motors, while the tracking errors
observed in the short time scale are attributed to the vibra-
tions of the mechanical mount which is not perfectly stiff. The
data obtained from the whole experiment takes approximately
1 GB of memory when stored in optimized MATLAB data
format and over 4 GB when written into text based .csv file.

The gathered data can be used not only for experimental
purposes, but also to supervise the performance of the tele-
scope system in order to detect failures and react as quickly
as possible to any reduction in control quality, which may
otherwise lead to loss of functionality of the system. In the
worst case, it can help diagnose a broken element thanks to the
recorded historical data. This subject was discussed in Katal et
al. [7], where difficulties and possible techniques to deal with
data analyze problem were presented.

Fig. 7. Detailed view of data obtained in the first 2 s of the experiment
Rys. 7. Szczegółowy widok danych uzyskanych w pierwszych 2 s trwania
eksperymentu

7. Summary

The design of a control architecture for autonomous tele-
scope mounts can be regarded as an interesting and challen-
ging task due to a high complexity of the system, difficulties
in achieving high performance of motion control and a relia-
ble operation of the system over a long period of time in
various environmental conditions. The tools described in
the paper have been created taking into account these requ-
irements. The implemented communication library ensures
that adding new signals to the growing code of the control-
ler will not take much effort, and no significant changes on
the client side will be necessary. The designed web applica-
tion allows monitoring, tuning the telescope control system
and conducting experiments from one place that can be
convenient for system designers and engineering scientists.
This diagnostic tool can also be used during the mainte-
nance to keep performance on the highest level and pre-
vent failures of the system. Alternatively, the VirtualStar
system enables astronomers to efficiently carry out desired
observations. The database provides access to measurements
gathered during observations to later conduct an analysis of
the acquired data.

The future work may include extension of functionality of
the presented client applications, including implementation
of log viewer and adding additional conversion and calcula-
tion functions in the web application. Moreover, reliability
and security of the considered communication scheme sho-
uld be increased. Specifically, introduction of some security
measures concerning prevention of unauthorized access to
the communication network may be considered as a crucial
issue for the employment of the telescope mounts working
under the proposed framework. Additionally, there is still
a space for the development of the error detection process
to achieve better effectiveness and reliability of the telescope
control system, including analysis of collected data.

Acknowledgments
We would like to express our thanks to our late leader, Pro-
fessor Krzysztof Kozłowski who was the initiator of series of
projects focused on the development of technologies for autono-
mous optical observation systems implemented at the Poznan
University of Technology.We would also like to thank Bar-
tłomiej Krysiak, PhD, and Mateusz Ochocki, MSc, who are
the designers of the mechanical structure of the telescopic
mount used in the SkyLab, and Tomasz Jedwabny, MSc, who
designed and integrated the electronic units of the system,
and Stanisław Kozłowski, PhD, for his support in the field of
astronomy and SST, and active participation in the functional
development of the SkyLab laboratory. We also thank Piotr
Mieszała, MSc, for his technical and administrative support
of the projects.

This research was funded by the Poznan University of Tech-
nology grant number 0211/SBAD/0121.

References

1.	 Abareshi B., Marshall R., Gott S., Sprayberry D., Cantarutti
R., Joyce D., Williams D., Probst R., Reetz K., Paat A., et
al., A new telescope control software for the Mayall 4-meter
telescope, „Software and Cyberinfrastructure for Astronomy
IV”, Vol. 9913, 2016, 645–656. SPIE,
DOI: 10.1117/12.2233087.

2.	 Cochran R., Marinescu C., Riesch C., Synchronizing the
Llinux system time to a PTP hardware clock. IEEE Inter-
national Symposium on Precision Clock Synchronization for
Measurement, Control and Communication, 2011, 87–92,
DOI: 10.1109/ISPCS.2011.6070158.

49

Patryk Bartkowiak, Radosław Patelski, Marta Kwiatkowska, Dariusz Pazderski

3.	 Edwards P., Amy S., Brodrick D., Carretti E., Hoyle S.,
Indermuehle B., McConnell D., Mader S., Mirtschin P., Pre-
isig B., et al., Remote access and operation of telescopes by
the scientific users. „Observatory Operations: Strategies,
Processes, and Systems V”, Vol. 9149, 2014, International
Society for Optics and Photonics, DOI: 10.1117/12.2058794.

4.	 Gawron T., Kozłowski K., Semi-automated synthesis of con-
trol system software through graph search, „Advanced, Con-
temporary Control”, 2020, 1092–1103, Springer,
DOI: 10.1007/978-3-030-50936-1_91.

5.	 Hohenkerk C.Y., SOFA and the algorithms for transforma-
tions between scales & between systems. [In:] H. Schuh, S.
Boehm, T. Nilsson, N. Capitaine (eds.), „Proc. of Journées
Systémes de Référence Spatiotemporels 2011”, 2012, 21–24.

6.	 Ivanescu L., Baibakov K., O’Neill N.T., Blanchet J.P., Blan-
chard Y., Saha A., Rietze M., Schulz K.H., Challenges in
operating an Arctic telescope. „Ground-based and Airborne
Telescopes V”, Vol. 9145, 2014, 1489–1509, SPIE,
DOI: 10.1117/12.2071000.

7.	 Katal A., Wazid M., Goudar R.H., Big data: Issues, chal-
lenges, tools and Good practices. [In:] 2013 Sixth Internatio-
nal Conference on Contemporary Computing (IC3), 2013,
404–409, DOI: 10.1109/IC3.2013.6612229.

8.	 Kozlowski K., Pazderski D., Krysiak B., Jedwabny T., Pia-
sek J., Kozlowski S., Brock S., Janiszewski D., Nowopolski
K., High precision automated astronomical mount. [In:] Con-
ference on Automation, 2019, 299–315, Springer,
DOI: 10.1007/978-3-030-13273-6_29.

9.	 Kozłowski S., Pazderski D., Krysiak B., Patelski R.,
Jedwabny T., Kozłowski K., Sybis M., SkyLab: Research

and development facility for ground based observations. „Gro-
und-based and Airborne Telescopes VIII”, Vol. 11445, 2020,
1399–1408, SPIE, DOI: 10.1117/12.2576332.

10.	Krysiak B., Pazderski D., Kozłowski S., Kozłowski K., High
efficiency direct-drive mount for space survei llance and NEO
applications. „Publications of the Astronomical Society of
the Pacific”, Vol. 132, No. 1015, 2020,
DOI: 10.1088/1538-3873/ab9cc5.

11.	Marchiori G., Formentin F., Rampini F., Reliability-centered
maintenance for ground-based large optical telescopes and
radio antenna arrays. „Groundbased and Airborne Telesco-
pes V”, Vol. 9145, 2014, 1346–1354, SPIE,
DOI: 10.1117/12.2057593.

12.	Sadeh I., Dezman D., Oya I., Pietriga E., Schwarz J., The
Graphical User Interface of the Operator of the Cherenkov
Telescope Array. [In:] Proc. of International Conference on
Accelerator and Large Experimental Control Systems (ICA-
LEPCS’17), Barcelona, Spain, 8-13 October 2017, 186–191.
JACoW, 2018,
DOI: 10.18429/JACoW-ICALEPCS2017-TUBPL06.

13.	Story K., Leitch E., Ade P., Aird K., Austermann J., Beall
J., Becker D., Bender A., Benson B., Bleem L., et al., South
Pole Telescope software systems: control, monitoring, and
data acquisition. „Software and Cyberinfrastructure for
Astronomy II”, Vol. 8451, 2012, International Society for
Optics and Photonics, DOI: 10.1117/12.925808.

14.	Vallado D.A., Crawford P.S., Hujsak R., Kelso T.S., Revisi-
ting Spacetrack Report #3. [In:] AIAA Astrodynamics Spe-
cialist Conference, 2006.

Streszczenie: Artykuł przedstawia nowy system sterowania i komunikacji zaprojektowany w celu
usprawnienia rozwoju i utrzymania zrobotyzowanego montażu teleskopu astronomicznego. Proponowane
rozwiązanie umożliwia użytkownikowi zdalny dostęp do dowolnych sygnałów wewnątrz sterownika
bez zwiększonego obciążenia podczas pracy systemu. Zaimplementowane rozwiązanie może być
wykorzystywane zarówno przez automatyczny system nadzorujący, jak i przez użytkownika lub operatora,
do nadzoru, sterowania i utrzymania urządzenia.

Słowa kluczowe: sterowanie w systemach wbudowanych, zdalne sterowanie, zdalne utrzymanie, kontrola warunków pracy, wykrywanie błędów i diagnoza

Architektura Systemu do zadań Rozwoju i Nadzoru
Zrobotyzowanego Teleskopu Astronomicznego

50

System Architecture for Development and Supervision of Robotic Astronomical Telescope

P O M I A R Y • A U T O M A T Y K A • R O B O T Y K A NR 4/2022

Patryk Bartkowiak, MSc, Eng
patryk.bartkowiak@put.poznan.pl
ORCID: 0000-0002-1675-4259

He is a doctoral student of Poznan University of Tech-
nologu (PUT) Doctoral School. He graduated from
the PUT with B.E. degree obtained in 2018 and M.S.
degree gained after year in area of Control and Robo-
tics. In September 2019, he started work on a project
aimed at designing, building a telescope and develo-
ping software to track objects in the sky for this device.
His area of interests focus mainly on programming, control systems, control algo-
rithms analysis and hardware implementation. The main area of his research are
underactuated systems, linearization methods and robust methods of state esti-
mation.

Radosław Patelski, MSc, Eng
radoslaw.patelski@put.poznan.pl
ORCID: 0000-0002-7301-5436

He is the Teaching/Reasearch Assistant in the Insti-
tute of Automatic Control and Robotics at the Faculty
of Control, Robotics and Electrical Engineering of the
Poznan University of Technology. He is also a PhD can-
didate in the discipline of Automation, Electronic and
Electrical Engineering. His scientific interests include
the state estimation, disturbance rejection and ada-
ptive control, with special attention given to the stability properties of these
systems.

Marta Kwiatkowska, MSc, Eng
marta.kwiatkowska@put.poznan.pl
ORCID: 0000-0003-4260-9909

She is an engineer in the Institude of Automatic Control
and Robotics at the Poznan Unversity of Technology
in the field of computer science and software engine-
ering, including development of the system for super-
vising operations of an astronomical telescope. In 2019,
she participated in research related to improvement
of pointing model for a telescope 0.5m, as part of her
M.S. thesis in area of Automatic Control and Robotics. Her scientific interest focus
mainly on software development, testing and data science in the space industry.

Dariusz Pazderski, PhD, DSc
dariusz.pazderski@put.poznan.pl
ORCID: 0000-0002-8732-7350

He received his PhD degree in 2007 from the Faculty
of Computing Science and Management of the Poznan
University of Technology (PUT). In 2017, he obtained
habilitation degree in control theory in robotics. Since
2020 he is the Head of the Institute of Automatic Con-
trol and Robotics at the Faculty of Control, Robotics
and Electrical Engineering (PUT). His research interests
include continuous and discontinuous nonlinear control, robust and adaptive con-
trol, state estimation techniques, motion planning, sensor systems and various
applications of robotic technology including autonomous observatory systems.
The results of his research have been published in many national and interna-
tional conferences and journal papers.

51

Patryk Bartkowiak, Radosław Patelski, Marta Kwiatkowska, Dariusz Pazderski

