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1. Introduction

Development of autonomous robotic telescopes poses consi-
derable challenges concerning reliability and maintainability 
of the supervised system. Devices designed with the aim of 
deployment in distant isolated locations, with possibly harsh 
and changing environmental conditions, require special means 
of supervision and maintenance to ensure their constant and 
infallible operation. Ivanescu et al. [6] presented some challen-
ges of the telescope working in such conditions, which resul-
ted in the need for constant supervision by a human operator. 
The demand for development of modern systems that allow 
easy and automated supervision or maintenance has recently 
been reported by Marchiori et al. [11]. Importantly, propo-
sed solutions have to be lightweight in terms of computatio-
nal resources as the performance of the telescope controller 
cannot be hindered during normal operations. Moreover, the 
need for a simplified graphical user interface for the control 
of the telescopes by the final user has also been reported, e.g. 
Abareshi et al. [1] with growing interest in taking advantage 
of modern web-based technologies as used by Sadeh et al. [12] 
or Edwards et al. [3]. Satisfaction of all these requirements 
introduces significant difficulty for any team working on the 
development of automated robotic telescopes.

In this paper a novel framework for software architecture 
designed to ease the development and maintenance of autono-
mous telescopes is presented. Recently, this architecture has 
been successfully employed in the SkyLab laboratory establi-
shed at the Poznan University of Technology in 2018. The pro-
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gresses in development of the SkyLab were already reported 
by Kozlowski et al. [8]; Krysiak et al. [10]; Kozłowski et al. [9].

The proposed framework takes advantage of an internal com-
munication scheme, which makes it possible to monitor every 
single signal in the software realization of the telescope con-
troller without affecting the real-time operation of the control 
loop. Multiple client applications able to communicate with 
the controller were implemented using this approach. They 
include services used to automatically synchronize the clock 
of the controller, acquire and store the data produced during 
the operation of the telescope, and control of the telescope 
using a graphical interface, either for maintenance or regular 
observations. The use cases presented in this paper confirm 
the wide applicability of the proposed framework.

The rest of the paper is organized as follows. Section 2 pre-
sents the overall structure of the discussed telescope system. 
In Section 3 details of the internal communication scheme are 
described. Section 4 presents the client application designed 
mainly for astronomical operations and Section 5 describes the 
client application for maintenance and development. In Section 
6 the example of some possibilities of the proposed system is 
presented. Section 7 concludes the paper.

2. Telescope System Architecture

The considered software architecture was designed for a set 
of astronomical telescope mounts currently developed at the 
Institute of Automatic Control and Robotics. The discussed 
collection consists of autonomous robotic mounts for a single 
telescope of diameter of either 0.5 m or 1 m. Currently, all of 
the SkyLab mounts work under the same framework presen-
ted in this paper. The example of the mount used in SkyLab 
is given in Fig. 1.

The developed solution consists of several interconnected 
devices including Mimas – Spartan 6 FPGA, microcontroller 
(MCU) STM32H743ZI2 with the high performance CPU ARM 
Cortex-M7 operating up to 480 MHz, an electronic security 
system with energy dissipation function (UZE), the compu-
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ter Raspberry Pi 4 (RPI) and the miniature NTP/PTP time 
server NTS-pico3 (GPS). The architecture of this system, with 
all channels of data exchange between the nodes, is graphically 
presented in Fig. 2.

2.1. Hardware-software structure
The STM32 is a main real-time controller which is responsible 
for performing low-level tasks such as processing data, compu-
ting trajectory, controlling motors and overviewing all external 
devices to ensure faultless operation. The control system loop 
is designed to work with a 10 kHz frequency for both axes 
of the telescope mount. Using the I2C interface, the STM32 
communicates with the UZE module to obtain the tempera-
ture and current measurements of the motors and to adjust 
a supply voltage or energy dissipation function settings. The 
main controller program is written in a standard C/C++ pro-
gramming language. Here, the novel programming framework 
introduced by Gawron and Kozłowski [4] was employed to 
manage the code structure and ensure the exchange of infor-
mation between separate modules. The FPGA is used mainly 
for signal processing and gathering of measurements, including 

telescope positions, status of encoders, supply voltage and 
current of the drives, which later are sent to the main STM32 
controller. The communication between FPGA and STM32 is 
made possible by employing a fast SPI interface with STM32 
in a role of a main device. FPGA is also tasked with exerci-
sing custody over drives controller as a watchdog and, in case 
of failure, interrupt PWM signals which control the drives. 
The RPI runs Linux-based Raspbian operating system with 
realtime Preempt RT kernel modified to incorporate support 
of the Precise Time Protocol (PTP). The real-time system 
is crucial to guarantee a minimum latency between external 
interrupts and the interrupt handling, and consistent beha-
vior of thread scheduling. Due to its networking capabilities, 
the RPI platform serves mainly as a relay for communication 
between the STM32 controller and external client applications. 
The communication between STM32 and RPI through the 
SPI interface is adjusted to use the ASTCom communication 
library, which is described in detail in Section 3. As the RPI 
is the only computer-scale node in the considered system, it 
also hosts several of those client services. The Relay program 
provides service support with the SPI interface and transmis-
sion of data between STM32 and external clients, including 
a Virtual Star Server (VSS), Database Relay, Robot Supervi-
sor Panel (RSP) or Time Synchronizer (TimeS). The task of 
Database Relay is to intercept the data streaming from the 
STM32 and save all transmitted data to an external database 
for future reference. The Virtual Star application is designed 
to ensure a proper operation of the telescope in astronomical 
observation tasks, while diagnostic operations can be carried 
out through a multi-function web application RSP. The RPI 
communicates with the external world by Ethernet connection, 
taking advantage of Websocket or HTTP protocol.

2.2. Time synchronization
In a case of astronomical observations, an availability of relia-
ble clock source is a crucial requirement to obtain a high level 
of tracking accuracy, as it is vital to calculate a position of an 
observed object in a given time instant. Thus, a custom time 

Fig. 1. The mount carrying a 0.5 m class telescope (PlaneWave CDK20 
0.51-m f/6.8 Corrected Dall-Kirkham with resolving power 0.28 arcsec 
and camera FLI PL16803 CCD 4096 × 4096 9 μm pixels with resolution 
0.54 × 0.54 arcsec/px and field of view 0.61 × 0.61 deg) used in SkyLab
Rys. 1. Montaż z teleskopem klasy 0,5 m (PlaneWave CDK20 0.51-m f/6.8 
Corrected Dall-Kirkham z maksymalną zdolnością rozdzielczą 0,28 arcsec 
oraz camerą FLI PL16803 CCD 4096 × 4096 9 μm piksele o rozdzielczości 
0,54 × 0,54 arcsec/px z polem widzenia 0,61 × 0,61 deg) stosowany 
w SkyLab

Fig. 2. Software, hardware and communication architecture of 
the telescope system
Rys. 2. Oprogramowanie, osprzęt i architektura systemu komunikacji 
w układzie teleskopu
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synchronization module was developed using a proposed com-
munication scheme. To this end, a GPS module is employed, 
which is connected to the RPI using an Ethernet standard. 
This enables the RPI to periodically update its internal system 
clock through the PTP protocol, as described in Cochran et 
al. [2]. However, in order to employ the PTP synchronization, 
the system kernel has to provide control of the hardware clock 
and packet timestamping at the hardware or software layer, 
which is ensured by the aforementioned kernel modifications. 
Once the synchronization of its system clock is performed, the 
RPI can be treated as the main source of time measurements 
in the considered system. By taking advantage of this notion, 
the program TimeS reads the synchronized system timestamp 
of the hindmost full second and transfers it in the UTC format 
to the STM32 using the proposed ASTCom approach, thus 
updating the internal clock of the telescope control system. In 
order to avoid time diverging, an additional one 1PPS (a pulse 
per second) signal is routed directly from the GPS module into 
one of the digital inputs of the STM, which enables the control 
system to precisely assign the received UTC timestamp to the 
time instant marked by the 1PPS pulse.

2.3. Database
Data storage during the operation of the automatic control 
system is an element of high importance, as it was emphasized 
by Story et al. [13]. In particular, thanks to recorded signals, 
it is possible to conduct an in-depth analysis of the conducted 
experiments, as well as to diagnose the cause of the possible 
system defects based on the data collected over a wide time 
horizon. An open-source time series database InfluxDB instal-
led on an external server with plenty of storage space is used 
for gathering and saving data from the controlled system. As 
has been mentioned earlier, the program Database Relay, run-
ning on the RPI machine, catches streamed signals and saves 
data into the database using InfluxDB’s custom command 
language similar to mySQL by the HTTP protocol. An arbi-
trary choice of stored data is given to the user of the telescope 
system and these can be defined using the RSP and VS appli-
cations, both of which are equipped with a user-friendly GUI. 
To access the database and download the data series, one can 
make use of the HTTP protocol directly or take advantage of 
a custom application that works as a module of the MATLAB 
environment. Any calculations, visualization, or data proces-
sing can also be done in the MATLAB program.

3. Communication Library Design

In order to facilitate the communication and data exchange 
between various nodes of the telescope environment, the novel 
communication protocol called the Astronomic Communi-
cation Library (ASTCom) was proposed and implemented. 
The library provides an interface for serialization and real-
-time exchange of data between various devices through the 
Websocket protocol. The serialization itself is performed using 
a custom format similar to the well-known MessagePack format 
enhanced with several extensions to accommodate features of 
the proposed scheme. Mainly, the possibility to dynamically 
configure the set of exchanged data at run-time is introduced.

The basis of the ASTCom library design is the system of 
variable and class registration, which allows the library to 
discover each and every desired variable declared in the code 
of the telescope controller. To this end, a conceptual ASTVa-
riable is defined as any variable or class that can be serialized 
by the ASTCom library. Serialization procedures for multiple 
basic types (e.g. integer, float, string, array, etc.) are predefined 
by the library itself. Moreover, ASTVariable can also repre-
sent a function with an arbitrary signature. In order to enable 

serialization of custom defined classes, the special macro AST_
VARIABLE_DEFINE is declared which, when included in the 
class definition, declares a set of functions used to serialize and 
deserialize all variables of the chosen class. The types of varia-
bles and a proper way of their processing are discovered auto-
matically by the library. Thus, once a class is defined, a call 
to a single function automatically serializes an entire content 
of its object, including any member objects that were imple-
mented taking advantage of the AST_VARIABLE_DEFINE. 
A globally accessible Collection class is then defined, which 
can be called to recursively scan and register any object of 
the ASTVariable type. During this process, information about 
name, type, address of data in physical memory and addres-
ses of serializing and deserializing functions of the object are 
stored in memory of the Collection singleton. Due to to the 
recursiveness of this operation, it is sufficient to register only 
the top level object, provided that all member objects are also 
of the ASTVariable type. Thus, if any change in the struc-
ture of the software is made, there is no requirement for any 
additional modifications outside the affected classes, as their 
proper registration is automatically ensured by the top level 
class. It is of major significance that all of these operations are 
performed either at compile time or on the device startup and 
does not in any way slow down main computation tasks exe-
cuted online by a CPU. Once the initial registration of objects 
is performed, the current state of any signal in the telescope 
can be easily obtained by invoking the Collection object with 
name and type of the required variable.

In order to make use of the proposed approach, two sepa-
rate modules are implemented – the Endpoint module, to be 
employed on board of the telescope, and the Client module, 
run in each of the client applications. Both modules are derived 
from the single Interface class. These two are then used to esta-
blish communication between various devices in the ASTCom 
network. To this end, a series of hard-coded ASTCommands is 
defined and used to exchange basic commands between devices. 
These are in nature similar to functions of the Modbus proto-
col and are first used to establish a formal connection between 
the nodes, during which version compatibility is verified and 
access rights are granted through password verification. Each 
connection is represented in both parties by a separate Con-
nection class object, which stores all information necessary to 
carry on the communication. It has to be noted that multiple 
Client devices can be simultaneously connected to a single 
Endpoint and their number can be limited by the Endpoint to 
reduce the performance impact. Once the connection is defined, 
the Client uses proper ASTCommands to query the Endpo-
int device and request it in order to define new ASTMessages 
– virtual structures consisting of several ASTVariables with 
a unique ID number assigned. Once the Endpoint receives such 
request, it queries the Collection for desired entries and copies 
pointers to serialization functions. Hence, once the ASTMes-
sage is defined in the Endpoint, it is directly available for use, 
and no additional overhead is created beside brief configuration 
of the messages, which can be done before the proper start of 
operation of the telescope system. On the Client side, the newly 
defined ASTMessage is also bound to a chosen locally defined 
variable of the same type. It is noteworthy that as the seria-
lization procedures of the basic types are hard-coded into the 
library, the Client device is not required to have counterparts 
of the defined data in its source code, as they can always be 
built in the runtime from objects of basic types. On both sides, 
defined ASTMessages are stored in the MessageRegister class 
object, with a notion that the Endpoint defines a single register 
used by all connections, while the Clients assign separate sto-
rage for each connection. The process of ASTMessage definition 
can be seen as creating of a bond between the local and remote 
variables on two devices. In case of an ASTMessage containing 
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an ASTVariables representing the function, the bound is made 
between the function on one device and variables used as its 
arguments on the other. Such messages containing references 
to a function can be transferred only in one direction, as argu-
ments can only be written to functions. A graphical scheme 
showing an example of this binding is given in Fig. 3.

Two modes of data exchange are supported by the ASTCom 
library – the private channel communication used to transfer 
data between two devices and the stream channel used by the 
Endpoint to broadcast large amounts of data to all connected 
clients. All of the aforementioned ASTCommands are also 
sent through the private channel. Importantly, the ASTCom 
library does not specify a precise transport layer of the chan-
nels, and thus the communication can be carried out using 
several medias, including Websocket, TCP/IP or SPI commu-
nication with both channels supported by a single connection 
or separated between two independent routes, e.g. two separate 
Websocket connections. The Client can request to exchange the 
data through one of these communication channels. In case of 
the private channel, the Client requests a single exchange of 
data of a chosen ASTMessage in the desired direction – the 
data can be both read from or written to the telescope. Once 
the command is carried out, the values of the bound variables 
are identical on both devices. If the considered ASTMessage 
contains ASTVariables representing the function, it is remo-
tely invoked, which can be used to control the behavior of the 
telescope controller.

While the private channel is designed mainly to control the 
telescope by the user or the supervisor, the stream channel 
is intended for constant acquisition of information about the 
state of the adevice. To this end, the Client may request the 
Endpoint to start recording chosen ASTMessages with a desi-
red frequency. Currently, on the considered setup of the tele-
scope controller, the recording with a frequency up to 10 kHz is 
possible. The Endpoint executes such a command, by cyclically 
serializing the value of requested variables into a local predefi-
ned buffer. Once a certain volume of data is acquired, the data 
is flushed and sent to all connected Clients, which receive the 
packets containing the amassed record of state of the telescope 
in the previous time instants. Importantly, Clients may bind 
the received data to some custom callback functions and this 
way process each sample of data separately upon arrival. Thus, 
a significant amount of data can be exchanged between devi-
ces to allow constant monitoring of the telescope performance. 

The proposed approach was first implemented in C++ code, 
as this is the language of the main controller of the telescope. 
To enable support of various client applications, the Client 
class with all necessary dependencies was later ported into 
JavaScript (using LLVM/Clang-based Emscripten compiler), 
pure C and C# (using p/invoke feature).

4. Automated Control System

In order to enable the user to interact with the telescope and 
perform standard astronomical calculations, the automated 
control VirtualStar (VS) system was developed. It is respon-
sible for real-time data acquisition and processing (e.g. axes 
states are continuously monitored) and, most importantly, it is 
a complex tool for calculation of desired telescope trajectories 
based on the movements of celestial objects. All these compu-
tations are possible with the use of commonly known astro-
nomical libraries (SOFA, SGP4) as reported by Vallado et al. 
[14]; Hohenkerk [5]. Moreover, this software is responsible for 
management of the graphical presentation layer and processing 
of user requests. In order to ensure full system scalability and 
security in data storage, the VirtualStar system design consists 
of two separate subsystems (shown in Fig. 2 as the VSS and 
VSC modules). C# and .Net Core 3.1 tools were chosen to 
implement all subsystem components, including open source 
astronomical libraries – nuget packages written as wrappers for 
C++ source tools. The server-based subsystem part has been 
built specifically for the linuxarm distribution, while the client 
part is only available as the Windows application.

4.1. VirtualStar Server
The basis of the VirtualStar Server (VSS) structure is the 
ASTCom Client module which enables the exchange of the 
current state of any signal processed by the STM32 controller. 
Directly at startup, the ASTMessages are defined according to 
the rules specified by the ASTCom modules. A custom JSON-
-based configuration file contains a set of variable and function 
names paired with specific ASTCom library signals, which are 
used to properly configure the connection. Then, after a suc-
cessful connection, each signal is transferred to the graphical 
presentation layer or sent to other subroutines within the VSS 
module, such as the kinematic calibration module (known as 
pointing model), for feature control tasks of the telescope sys-
tem. The computation and data preparation are completely 
independent of the telescope mechanics, making it possible, for 
example, to continuously provide trajectory samples while trac-
king satellites without waiting to reach a previous point. Con-
nected to the ASTCom Endpoint, VSS takes advantage of the 
private communication channel to query the Endpoint device 
and request it to perform the following commands: initialize/
start/reset trajectory, getting a free buffer space, rotation aro-
und the horizontal axis (control of the altitude angle), rotation 
around the vertical axis (control of the azimuth angle), and 
sending next trajectory positions. In addition, using this mode, 
it also reads signals considered to be the general state of the 
device: telescope positions from encoders (instrumental alti-
tude and azimuth angles), operating state, status and potential 
errors of each axis, and current time measured in microseconds. 
Meanwhile, the stream channel communication is used by the 
VSS to receive continuous tracking errors data with a speci-
fied frequency. Then, these position errors are stored in inter-
nal data arrays until they are forwarded to the VirtualStar 
client’s presentation layer, described briefly below. It should 
be noted that both the mount driver and ASTCom library 
process requests synchronously, while the VirtualStar system 
handles all commands fully asynchronously. This means that 
at the VSS level it was necessary to include a synchronization 

Fig. 3. Example of variable binding in ASTCom. Note that function 
reset() is called without any argument and the remote variable int pos 
is used to invoke a local callback function. Variables float tau and 
float var4 can be transferred in both directions
Rys. 3. Przykład łączenia zmiennych w ASTCom. Zauważyć można, że 
funkcja reset() wywoływana jest bez argumentów, a zdalna zmienna int pos 
wykorzystywana jest do wywołania funkcji lokalnej. Zmienne float tau oraz 
float var4 mogą być przesyłane w obu kierunkach
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module, thanks to which overloads and communication errors 
were avoided. It is a simple mutex-based implementation that 
always passes only one thread to the requesting function and 
holds all others until it is released.

4.2. VirtualStar Client
The user interface of the VirtualStar is designed as a stan-
dalone desktop VirtualStar Client application based on the 
Windows Presentation Foundation (WPF) framework and .Net 
Core 3.1. Its basic structure consists of the background com-
munication layer and the graphical user interface with data 
presentation features. The exchange of data between the VSS 
and the VSC is performed on a separated communication layer 
using a Websocket protocol. All high-level application com-
mands inputted by the user through the graphical layer are 
immediately converted to messages in JSON format and sent 
to the VSS, where they are serialized to particular commands 
recognized by the mount driver. Once a command is sent to the 
VSS, the VSC waits for the response stating that the command 
was correctly classified, executed, and completed successfully. 
Furthermore, the communication with the VSS is kept active 
by using a watchdog, which informs about any possible gaps 
in sending requests even though the Websocket state is still 
open. By applying a continuous time synchronization with the 
mount driver, both STM32 controller and VirtualStar subsys-
tems operate in the same clearly defined time domain. Thus, 
all discrete points approximating the desired trajectory are 
fully synchronized and the motion actions are performed with 
a valid coordinates conversion time.

The graphical user interface layer (Fig. 4) shows the cur-
rent coordinates as instrumental positions in the horizontal 
system (based on encoders values) (1), as well as current astro-
nomical coordinates, both in the horizontal and equatorial 
systems (2). The last item in the vertical stack is the field for 
the input of the slewing targets (3), defined in any coordinate 
system. Other functionalities of the system (4) include: swit-
ching to a passive or active state, starting or stopping sidereal 

tracking, sending TLE orbital elements data for satellite trac-
king, monitoring operations of the entire system and reacting 
to possible errors and faults, preparing a file for the calculation 
of pointing model coefficients, and generating an automatic 
observations program.

5. Web Based Human Interface

The web application called the Robot Supervisor Panel (RSP) 
was created to facilitate the development and testing of the 
telescope system and to enable the designer to interact with the 
system in a simple and easy way. The main focus of the RSP 
is given to diagnostics, parameter tuning, online visualization 
with signal processing, and the possibility of conducting expe-
riments for the telescope development and maintenance. The 
application is written using standard web development tools, 
including Hyper-Text Markup Language (HTML), Cascading 
Style Sheets (CSS) with Leaner Style Sheets (LESS) and Java 
Script (JS). Additionally, the JS front-end framework Vue.js is 
used for simplification of the design process and maintenance 
of the code. The most significant advantage of this framework 
is the reactivity feature. Namely, after any change of a reac-
tive state, the interface structure is updated automatically. 
Moreover, this framework supports the modular structure of 
the application, which enables to dynamically modify the page 
depending on data received from the telescope system and the 
user’s interaction.

5.1. Communication with the telescope system
The main target of RSP is an exchange of information with 
the telescope system by taking advantage of the ASTCom 
communication library. The RSP interface is divided into seve-
ral panels, each responsible for a different functionality. The 
first panel, called Board, can be used to initiate a connection 
with the telescope system. Once the connection is successfully 
established, the application queries the telescope controller 

Fig. 4. VirtualStar graphical user interface (a color inversion is applied to the image for readability)
Rys. 4. Interfejs graficzny aplikacji VirtualStar (dla zwiększenia czytelności zastosowano inwersję kolorów na ilustracji)
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for a list of all available variables which are then separated 
into three types: streaming signals, parameters, and executa-
ble functions. An internal structures corresponding to these 
remote variables are then dynamically created to be used in 
further processing. These dynamically defined variables are 
used to exchange data with the telescope controller. It should 
be noted that for writing, reading, and streaming requests, 
the RSP takes advantage of a private channel to communicate 
with the Endpoint, and streaming channel to receive streaming 
data of requested signals.

5.2. Monitoring
The Board tab also shows all basic information about the 
device, including connection status, telescope status, and possi-
ble errors. The designed layout allows the user to keep an 
eye on the device and connection status without much effort. 
A full overview of all statuses and errors for each module of 
the telescope system can be found on the Diagnostics tab. In 
this tab, the user is able to check states of low-level control-
ler, motors or a trajectory status. The card Signals presents 
remote variables available for streaming and is responsible for 
defining commands for a stream of chosen signals with a fre-
quency up to 10 kHz that is equal to the sampling frequency 
of the main controller. The Plot card, as the name suggests, 
is used to visualize received data of streamed variables. More-
over, an additional tab called Compute is provided, which ena-
bles the user to perform algebraic calculations using streamer 
signals, the results of which can be later displayed in Plot tab. 
Significantly, each card offers a possibility to save its current 
state to a local configuration file, which can be later loaded to 
restore all settings with just a one click, e.g. if there is a need 
to recreate a past experiment.

5.3. Adjusting the control system
Using the Parameters card, one can easily read and modify 
the parameters values of the telescope system to perform the 
controller tuning. During the tuning process there is no need 
to restart the system to apply new settings and this process 
can be done online, while the telescope executes the ordered 
task. The online browser of signals received from the control-
ler helps to manually tune up parameters to obtain the requ-
ired performance of the control system for various conditions.

5.4. Control and experiments
The Input card enables to send predefined control commands 
like start, stop, or reset, and custom commands to remotely 
execute functions with given arguments. From this panel the 
user is also able to define a trajectory for each axis by giving 
a mathematical formula dependent on time and additionally 
specifying experiment duration. This function of the RSP has 
been used for experimental validation in Section 6.

6. Experimental Validation

In order to present the practical possibilities of the proposed 
software framework, the experiment was performed using the 
real telescope system operating in SkyLab. The experiment 
was conducted for a whole-night tracking of drifting sinusoidal 
trajectory specified for the single axis of the telescope with an 
average speed of approximately 0.0095 rad/min that resulted 
in an axis covering the distance of 6.8 rad in 12 h. Data acqu-
isition was carried out throughout the experiment with a fre-
quency of 1 kHz. The change of axis position from the start of 
experiment, motor current, and position tracking error were 
chosen for recording. Notably, all data was gathered directly 
from the drive controllers and visualizes the performance of 
the mount itself irrespectively from properties (e.g. resolving 
power) of the optical part of the telescope. Due to the sim-
ple character of the desired trajectory, the RSP module was 
used for its generation. Alternatively, VS application could be 
employed to perform the experiment with a trajectory corre-
sponding to movement of some celestial objects. The database 
was used for online storage of acquired measurements. Signifi-
cantly, the experiment was conducted remotely and no kind of 
human supervision was required throughout the experiment. 
The results of the experiment are given in Fig. 6.

In Fig. 7 a zoomed view of only the first two seconds of the 
experiment with full resolution of 1000 samples per second is 
given. Notably, both these figures were created using the same 
data from the same experiment. This exposes the possibilities 
of the proposed solution to monitor the performance of the 
telescope in different time scales while preserving high time 
accuracy even for long acquisition periods. In particular, one 
can distinguish different dynamic effects visible in Fig. 6 and 7 

Fig. 5. Example views of different tabs of Robot Supervisor Panel web application
Rys. 5. Przykładowe widoki w różnych zakładkach przeglądarkowej aplikacji Robot Supervisor Panel
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Fig. 6. Data obtained during the whole experiment 
Rys. 6. Dane uzyskane w trakcie całego eksperymentu

– vibrations visible in the wider time horizon are presumably 
caused by the presence of cogging torque due to the electro-
mechanical structure of the motors, while the tracking errors 
observed in the short time scale are attributed to the vibra-
tions of the mechanical mount which is not perfectly stiff. The 
data obtained from the whole experiment takes approximately 
1 GB of memory when stored in optimized MATLAB data 
format and over 4 GB when written into text based .csv file.

The gathered data can be used not only for experimental 
purposes, but also to supervise the performance of the tele-
scope system in order to detect failures and react as quickly 
as possible to any reduction in control quality, which may 
otherwise lead to loss of functionality of the system. In the 
worst case, it can help diagnose a broken element thanks to the 
recorded historical data. This subject was discussed in Katal et 
al. [7], where difficulties and possible techniques to deal with 
data analyze problem were presented.

Fig. 7. Detailed view of data obtained in the first 2 s of the experiment 
Rys. 7. Szczegółowy widok danych uzyskanych w pierwszych 2 s trwania 
eksperymentu

7. Summary

The design of a control architecture for autonomous tele-
scope mounts can be regarded as an interesting and challen-
ging task due to a high complexity of the system, difficulties 
in achieving high performance of motion control and a relia-
ble operation of the system over a long period of time in 
various environmental conditions. The tools described in 
the paper have been created taking into account these requ-
irements. The implemented communication library ensures 
that adding new signals to the growing code of the control-
ler will not take much effort, and no significant changes on 
the client side will be necessary. The designed web applica-
tion allows monitoring, tuning the telescope control system 
and conducting experiments from one place that can be 
convenient for system designers and engineering scientists. 
This diagnostic tool can also be used during the mainte-
nance to keep performance on the highest level and pre-
vent failures of the system. Alternatively, the VirtualStar 
system enables astronomers to efficiently carry out desired 
observations. The database provides access to measurements 
gathered during observations to later conduct an analysis of 
the acquired data.

The future work may include extension of functionality of 
the presented client applications, including implementation 
of log viewer and adding additional conversion and calcula-
tion functions in the web application. Moreover, reliability 
and security of the considered communication scheme sho-
uld be increased. Specifically, introduction of some security 
measures concerning prevention of unauthorized access to 
the communication network may be considered as a crucial 
issue for the employment of the telescope mounts working 
under the proposed framework. Additionally, there is still 
a space for the development of the error detection process 
to achieve better effectiveness and reliability of the telescope 
control system, including analysis of collected data.
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Streszczenie: Artykuł przedstawia nowy system sterowania i komunikacji zaprojektowany w celu 
usprawnienia rozwoju i utrzymania zrobotyzowanego montażu teleskopu astronomicznego. Proponowane 
rozwiązanie umożliwia użytkownikowi zdalny dostęp do dowolnych sygnałów wewnątrz sterownika 
bez zwiększonego obciążenia podczas pracy systemu. Zaimplementowane rozwiązanie może być 
wykorzystywane zarówno przez automatyczny system nadzorujący, jak i przez użytkownika lub operatora, 
do nadzoru, sterowania i utrzymania urządzenia.

Słowa kluczowe: sterowanie w systemach wbudowanych, zdalne sterowanie, zdalne utrzymanie, kontrola warunków pracy, wykrywanie błędów i diagnoza

Architektura Systemu do zadań Rozwoju i Nadzoru 
Zrobotyzowanego Teleskopu Astronomicznego
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