PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Working principle analysis and control algorithm for bidirectional DC/DC converter

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A bidirectional DC/DC converter is an important part of the DC micro grid system, playing a key role in the stable operation of the system and the coordinated distribution of power. To solve the problem of unstable busbar voltage when the energy transforms bidirectionally in the DC micro grid system, a control algorithm based on closed-loop proportion integral derivative was proposed in this study. The hardware cinarcuit of the bidirectiol DC/DC converter was designed in the DC micro grid energy storage system, and the characteristics of converter efficiency in charging mode and constant voltage output were studied by small-signal modeling of the bidirectional DC/DC converter in charging and discharging systems. Experimental data were used to prove the correctness of the theoretical analysis. The results demonstrate that the current-controlled precision changes steadily in the charging mode when the output voltage is constant and the charging current is adjustable in ranges between 1 A and 2 A. When the charging current is 2 A and the output voltage ranges from 24 V to 36 V, the change rate of the charging current undergoes stable changes. In the discharge mode, when the output voltage is stable, the converter conversion rate changes steadily. When the output voltage changes in the range between 32 V and 38 V, the bidirectional DC/DC circuit automatically switches over the work patterns and maintains the stability of the output voltage. This study achieves bidirectional transmission of energy by rational hardware design of a bidirectional DC/DC converter and improves the reliability of the DC micro grid energy storage system. The proposed method provides a good prospect of a control scheme for the bidirectional DC/DC converter to optimize practical engineering design.
Rocznik
Strony
327--335
Opis fizyczny
Bibliogr. 28 poz., rys., tab., wykr.
Twórcy
autor
  • School of Information Science and Engineering, Dalian Polytechnic University, Dalian, 116034, China
autor
  • School of Information Science and Engineering, Dalian Polytechnic University, Dalian, 116034, China
autor
  • School of Electrical Engineering and Telecommunications, The University of New South Wales, Sydney, NSW 2052, Australia
autor
  • School of Information Science and Engineering, Dalian Polytechnic University, Dalian, 116034, China
Bibliografia
  • [1] Q. Zhong, Y. Yi, Analysis and simulation of voltage drop problem in power users, Journal of Electric Power Systems and Automation 20 (6) (2008) 102–106.
  • [2] R. Shao, J. Han, Zhengwei nad Lin, Power quality index analysis, Journal of Power System and Its Automation 19 (3) (2007) 118–121.
  • [3] Y. Liu, C. Huang, L. Ou, et al., Three-phase unbalanced voltage sag detection method based on dq transform, Journal of Power System and Automation 19 (3) (2007) 72–76.
  • [4] Y. Zhou, W. Luo, Design and simulation of bidirectional DC/DC converter topology, Automation Expo 10 (2012) 102–105.
  • [5] X. Liang, Simulation and design of dc/dc converter control, Ph.D. thesis, Qingdao University of Science and Technology, Qingdao (2016).
  • [6] D. M. Xu, X. Wu, J. Zhang, Z. Qian, High power high frequency halfwave-mode ZCT-PWM full bridge DC/DC converter, in: Applied Power Electronics Conference and Exposition, 2000. APEC 2000. Fifteenth Annual IEEE, Vol. 1, IEEE, 2000, pp. 99–103.
  • [7] K. Ramya, V. Jegathesan, Comparison of pi and pid controlled bidirectional dc-dc converter systems, International Journal of Power Electronics and Drive Systems 7 (1) (2016) 56.
  • [8] N. Jabbour, C. Mademlis, I. Kioskeridis, Improved performance in a supercapacitor-based energy storage control system with bidirectional dc-dc converter for elevator motor drives, in: International Conference on Power Electronics, Machines and Drives (PEMD’14), IET, Manchester, UK, 2014.
  • [9] G. Borocci, F. G. Capponi, G. De Donato, F. Caricchi, Closed-loop fluxweakening control of hybrid-excitation synchronous machine drives, IEEE Transactions on Industry Applications 53 (2) (2017) 1116–1126.
  • [10] Z. Yu, L. Nie, H. Lv, et al., A review of DC access technology for electric vehicle charging station, Journal of Electrical and Mechanical Engineering 32 (2) (2015) 279–284.
  • [11] D. Jiang, F. Liu, R. Mao, X. Yuan, Buck-boost integrated three-port DC-DC converter with coupling inductor, Automation of Electric Power System 38 (3) (2014) 7–13.
  • [12] Y. Cai, C.Wang, Y.Wang, Study on dab lcc resonant bidirectional dc/dc converter, Journal of Coal Engineering 47 (2) (2015) 92–94.
  • [13] P. Lin, Bidirectional DC/DC converter designing based on microcomputer, Computer Knowledge and Technology 13 (13) (2017) 210–211.
  • [14] X. Wei, D. Dai, New type bi-directional DC/DC converter PID control based on arranging transient process, Journal of Electric Power Science and Engineering 33 (8) (2017) 6–12.
  • [15] L. Zhao, J. Li, W. Fan, Y. Zhang, X. Zhang, Design of bidirectional DC/DC converter based on STC89C51, Journal of Electrical Design 5A (2017) 56–57.
  • [16] F. Z. Peng, H. Li, G.-J. Su, J. S. Lawler, A new ZVS bidirectional DCDC converter for fuel cell and battery application, IEEE Transactions on power electronics 19 (1) (2004) 54–65.
  • [17] C. Shi, X. Tang, N. Li, G. Sun, Y. Sun, Dc conversion technology based on full bridge isolation bidirectional converter, Journal of Electrotechnical Society 31 (2) (2016) 121–127.
  • [18] Y. Tong, G. Wu, X. Jin, et al., Topological study of bidirectional dc/dc converters, Proceeding of the CSEE 27 (13) (2017) 81–86.
  • [19] F. Akar, Y. Tavlasoglu, E. Ugur, B. Vural, I. Aksoy, A bidirectional nonisolated multi-input DC–DC converter for hybrid energy storage systems in electric vehicles, IEEE Transactions on Vehicular Technology 65 (10) (2016) 7944–7955.
  • [20] G. Waltrich, M. A. Hendrix, J. L. Duarte, Three-phase bidirectional dc/dc converter with six inverter legs in parallel for ev applications, IEEE Transactions on Industrial Electronics 63 (3) (2016) 1372–1384.
  • [21] K. Lang,W. Lin, Y. Xu, Current status of two-way dc/dc converter circuit topology, in: China Electrotechnical Society of Electric Power Society Academic Conference, China, Beijing, 2008, pp. 1–5.
  • [22] Y. Zhang, Y. Gao, J. Li, M. Sumner, Interleaved switched-capacitor bidirectional DC-DC converter with wide voltage-gain range for energy storage systems, IEEE Transactions on Power Electronics 99 (2017) 1–16.
  • [23] L. Huang, X. Dong, C. Xie, S. Quan, Y. Gao, Research and modeling of the bidirectional half-bridge current-doubler DC/DC converter, International Journal of Rotating Machinery 2017.
  • [24] R. Anand, P. M. Mary, Improved dynamic response of dc to dc converter using hybrid pso tuned fuzzy sliding mode controller, Circuits and Systems 7 (06) (2016) 946–955.
  • [25] R. S. Balog, P. T. Krein, Bus selection in multibus dc microgrids, IEEE Transactions on Power Electronics 26 (3) (2011) 860–867.
  • [26] G. Lu, L. Zhang, Y. Bu, Y. Zhou, Study on front-end bidirectional dc/dc converter of photovoltaic grid-connected inverter, International Journal of Mechatronics and Applied Mechanics 1 (2017) 45–52.
  • [27] F. Zhang, Two-way DC/DC converter, Master’s thesis, Nanjing University of Aeronautics and Astronautics, Nanjing (2005).
  • [28] F. Zhang, C. Zhu, Y. Yan, Control model of bidirectional DC/DC converter, Proceeding of the CSEE 25 (11) (2015) 46–49.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-11591d8a-5674-4e45-86cd-87b938f8eac4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.