INFORMATION
SYSTEMS IN

MANAGEMENT Information Systems in Management (2016) Vol. b 858-369

REST APl SAFETY ASSURANCE BY MEANS
OF HMAC MECHANISM

GRZEGORZNOWAKOWSKI

Department of Automatic Control and Information Riealogy,
Cracow University of Technology (PK)

The HMAC mechanism that enables authentication RE&Vices and assures
their integrity, non-repudiation and confidentiglihas been presented in this article.
A demonstration Restful APl has been implementethgusSlim Framework,
in which several endpoints for login, test routeitable only for registered users
and authenticated by means of HMAC mechanism, baea assigned. The solution
proposed here suggests an alternative that isteaisygplement compared to other
well-known methods of authentication and authoriat

Keywords: REST (Representational State Transfek)AB (Keyed-Hash Message
Authentication Code), API (Application Programmiimgerface), cryptography

1. Introduction

Current applications use or share increasinglyr tAéil (Application Pro-
gramming Interface) in the form of web-servicesthe case where services are
available to the public or for applications witimlted trust, it is important to en-
sure the appropriate level of security of these@ises. The mechanisms that pro-
vide the security level are mainly based on a $é@g and are commonly called
message authentication codes — MAC (Message Autlagnoh Code). They are
used mainly between two parts that share a seesetdk authenticate the infor-
mation transmitted between these parts. In modefotagraphy a shortcut func-
tion with a secret key called HMAC (Keyed-Hash Mags Authentication Code),



in short, ensuring both the protection of the intggand authenticity of data,
is used as MAC codes.

The HMAC mechanism that enables authenticationE$R (Representation-
al State Transfer) services and assures theirrititegon-repudiation and confi-
dentiality, has been presented in this article.efndnstration of Restful APl has
been implemented using Slim Framework, in whichesalvendpoints for login,
test route available only for registered usersauttienticated by means of HMAC
mechanism, have been assigned. The solution prdhese suggests an alternative
that is easy to implement comparing to other walikn methods of authentica-
tion and authorization, is easy to implement.

2. Rest

REST [1] is a standard software architecture tlescdbes how to handle que-
ries to the API and introduces a set of good prastiREST simplifies request and
response operation in a new and easier way, wittesgrting to complex docu-
mentation. It is based on URI addresses (UniformeoRece Identifier) and HTTP,
without using an additional encapsulation suchrashe SOAP (Simple Object
Access Protocol) protocol, for example. The conditand functionality of the
application is divided into units defined @sourcesAll resourcesuse a uniform
interface for changing the state, which consistsa dimited set of well-defined
operations and a limited set of data representatiopractice, the data are repre-
sented in JSON (JavaScript Object Notation) [5], XiExtensible Markup Lan-
guage) [6] and HTML (HyperText Markup Language)nfiet, for example, or in
text format. Additional request details are sent&3 P header parameters.

This standard was developed by Roy T. Fielding, wiote his doctoral dis-
sertation on this topic [4]. Roy Fielding is onetloé principal authors of the HTTP
specification, an authority on computer networkhédecture and co-founder of the
Apache HTTP Server project.

2.1. Richardson Maturity Model

The Richardson Maturity Model (presented in Figije[2], developed by
Leonard Richardson, describes the bases of RE&¥rms of resources, verbs, and
hypermedia controls. The starting point for theurigt model is to use the HTTP
layer as transport.

Level 0 — Remote Procedure Invocatidmvel O includes sending data by
means of SOAP or XML-RPC technology as POX (Plald ®ML). Only the
POST methods are used. This is the easiest wayildirig SOA (Service-Oriented
Architecture) application using a single POST mdthad XML format to com-
municate between services.

359



Level 1 — REST resourcelsevel 1 deals with the POST methods and the
REST URIs are used instead of function and passiggments. Only one HTTP
method is being used. The advantage of level Elation to level 0 is to break
a complex functionality into multiple resourceswihe use of one POST method
serving to communicate between services.

Level 2 — Additional HTTP verbgevel 2 deals with other HTTP verbs such
as GET, POST, PUT, DELETE. It represents the realaf REST technology in
which different HTTP verbs are being used in orterequest methods and the
system can have multiple resources.

Level 3 — Hypermedia as the Engine of ApplicatitateSHATEOAS is the
most mature level of Richardson's model. The resg®rio the clients requests
contain hypermedia controls, which can help a tlitendecide what to do next.
Level 3 encourages easy discoverability and makessiy to understand.

Hypermedia
as the Engine
of Application State

Level 2:
Multiple URI
based resources and verbs

Level 1:
Multiple URI
based resources and single verbs
Level 0:
Single URI and a single verb

Figure 1. Richardson Maturity Model [2]

2.2. Safety and idempotence [2, 4]

A method that does not change the state on theers&svconsidered to be
a safe method. An idempotent method is a method wvifla produce the same
results irrespective of how many times it is call€édey are shown in Table 1.

The GET method is safe because it enables to gessdo a resource, and
thus does not change the state on the server. Rsgsent by this method are
cached and can contain parameters. POST and PUlodseare not safe as they
can create or modify a resource on the server.OBEETE method is not safe
either as it deletes a resource on the server.

360



The GET method is idempotent because no matterrhamy times the meth-
od is tested, the response is always the samePTHemethod is idempotent as
well. Calling the PUT method multiple times will dgte the same resource and not
change the outcome. POST method is not idempotehtalling it multiple times
may have different results and create new resouitles DELETE method is
idempotent because based on the RFC 2616, thefaits of N > 0 requests are
the same as for a single request. This means ticat the resource deleted, calling
DELETE multiple times will get the same response.

Table 1.Safety and idempotence methods

Method Safe Idempotent
YES | NO | YES| NO
GET X X
POST X »
PUT y
DELETE < | x

2.3. How did the RESTful Web Services come ints&xice?

There are two ways to build architecture (whetloémsare or not):

- from scratch by taking some known components, such as Sliiné&wnaork, and
assembling them, with full freedom of action aneating what is needed
respectively,

- from the wholeby building the whole and imposing some limitaso

The latter approach was adopted at creating RE®€eqn. It started with hyper-
text, multimedia, WWW (World Wide Web) informati@ystem and imposed the
following restrictions [4]:

- client - server(separation of interface and space where datstaired),

- statelessneg®ach request from the client to the server hasmtain all details
to understand the request. It helps to improvebiiy, reliability, and scalabil-
ity of requests. Visibility is improved, as the ®® monitoring the requests
does not have to look beyond one request to olokeiails. Reliability is im-
proved as there are no check-points and resumirgase of partial failures.
Scalability is improved because the number of retpuhat can be processed by
the server increases, as the server is not redpersr storing any state infor-
mation),

- cache vulnerabilitybuffering some resources we can avoid unnecegstamny
action and make the application work faster),

- uniform interface(using: GET, POST methods, etc., gives some sficgion
and reliable performance increase).

361



2.4. Design principles for building RESTful sengce

The entire process of designing, developing, astinig RESTful APl demo
(in which several endpoints for login, test roatailable only for registered users
and authenticated by means of HMAC mechanism, baea assigned) was divid-
ed into several stages, and then created gendmamsc design principles that
should occur during such a process.

Stage 1 - identifying the resource URIResources [2, 3, 4] are the key con-
cept in REST technology. The resource represergsyting that is interesting
enough so that we want to relate to it. RESTfubueses are identified by resource
URIs. REST is extensible due to the use of URIsiflentifying resources by
resource URIs. REST is extensible due to the u&&Rd$ for identifying resources.
There are two types of addresses to resources:

- collection addresswhich usually ends with a descriptive name, egtians,
- a single addresstem of a particular resource that usually endghveome
identifier.

Table 2.Sample URIs, which can represent different resauirtéhe system

URI Description of the URI
Iv1/users this is used to represent all users
N1/users/1234 t;uszLrs used to represent a user in a system fia=hty
/v1/users/1234/auctionst.h's is l{sed tp represent all the auctions forex identi-
fied by ‘1234

All the preceding samples (presented in Table ®wsh clear readable pattern,
which can be interpreted by the client.

Stage 2 - identifying the methods supported by the reso(2¢ 3, 4]. HTTP
verbs comprise a major portion of the uniform ifdee constraint, which defines
the association between the actions identified l®y terb and the noun-based
REST resource. A summary of HTTP methods and degmmi of its actions have
been presented in Table 3.

Table 3. Summary of HTTP methods and description of itscasti

HTTP method Resource UR| Description
GET lusers gets a list of users
GET lusers/1234 gets a user identified by '1234'
POST lusers creates a new user
PUT lusers/1234 updates a user identified by ‘1234’
DELETE lusers deletes all users
DELETE lusers/1234 deletes a user identified by ‘1234’

362



HTTP verbs in the context of RERT 4]. HTTP verbs inform the server how
to deal with the data sent as part of the URL. sary of HTTP methods in the
context of REST has been presented in Table 4.

Table 4. Summary of HTTP methods in the context of REST

HTTP method Method description
enables access to a resource. Whenever the diiekd a URL in the browser|
GET the lattersends a GET request to the address specified byRte The GET

requests are cached and can contain parameters.
is used to create resources. Multiple invocatioofsthe POST requests can
create multiple resources.

is used to update resources. Multiple invocatiaighe PUT requests shou
PUT produce the same results by updating the resolife PUT requests shou
invalidate the cache entry if it exists.

the difference between PUT and POST methods comdéRi Request. The
URI identified by POST defines the entity that hasdhe POST request. The

POST

o o

\F/)eorsSJs URI in the PUT request includes the entity in thguest. PUT and POST can

PUT both be used to create or update resources. Thye wfathe corresponding
method depends on the idempotence behavior expéctedthe method as
well as the location of the resource to identify it

DELETE is used to delete resources. The delete resouseppubars and re-calling the

same method multiple times does not change th@mgc

Stage 3 - identifying the different resource representatio RESTful
resources are abstract entities that need to ldized into a presentable format
before sending to the client. The most common negotepresentations are XML,
JSON, HTML, or plain text. A resource can provitle tepresentation to the client
depending on what the latter can handle. A cliemt specify their preferred lan-
guages and media types.

Sage 4 - implementation of RESTful services using Sliantework and au-
thentication using HMAC mechanisithere are many different methods or proto-
cols that might be used (by a programmer) to seREST API and all of them
have advantages and disadvantages. One of theaprowr’'s challenges when
handling REST API security is the fact that it ipranciple of REST architecture to
remain stateless. The server does not maintaimesnord of whether or not a user
is authenticated / authorized. In order to deteemivho sends the request (and
whether it is authorized to access a particulavuwe) from the server side, all the
information needed to operate has to be containtdnwthe request coming from
the client.

The authentication method using HMAC mechanism gpsed below) is
a very good solution for securing a REST API.

Generally, the idea of HMAC is based on the faet th client and a server
know a secret key. This secret key is never samcily during authentication.

363



It is only used in combination with other data edens and then transmitted. In this
way, when we use a secret key and any other tréteshdata: a public key that
identifies the user (in the form of a header orki®p the current Unix timestamp,
or other elements that we want to use - and passidita through encryption algo-
rithm, such as SHA-1 (one-way hash function) faaragle, we can create the same
hash, both on the client’'s and the server’s sidmvéver, the server assumes that
the message is authentic and comes from the chiecguse only they know the
key used to generate the HMAC.

HMAC uses the following parameters [10 - 13] (preed in Table 5):

Table 5.HMAC parameters

B Block size (in bytes) of the input to the Approvexth function.

H An Approved hash function

ipad Inner pad; the byte x'36’ repeated B times.

K Secret key shared between the originator and teaded receiver(s).
Ko The key K after any necessary pre-processing ta B byte key

L Block size (in bytes) of the output of the Approveash function.

opad Outer pad; the byte x'5¢’ repeated B times.

text The data on which the HMAC is calculated; text doesinclude the padded key. The
length of text is n bits, where 0 <n < 2B - 8B.

x ‘N’ Hexadecimal notation, where each symbol in thagtiN’ represents 4 binary bits.
Il Concatenation.
b Exclusive-Or operation.

Source[10 - 13]

To compute a MAC over the data 'text’ using the HMAunction, the following
operation is performed:

MJtext) = MM K text) =
H(KO @ opad ) || H(KO @ ipad) || text)) @

Table 6. illustrates the step by step processarHiAC algorithm.

The authentication mechanism applied to a speeif@mple has been pre-
sented in Figure 2. Restful APl has been implententsing Slim Framework,
in which several endpoints for login, test routaikable only for registered users
and authenticated by means of HMAC mechanism, baee assigned.

Slim [7] is a PHP micro framework that helps youcgly write simple yet
powerful web applications and APIs. It includestiogi mechanism and a simple
template system, session maintenance and cookiefioWws building a website
using essentially one fiiedex.phpand several endpoints.

364



Table 6. HMAC Algorithm

Steps Description

1 If the length oK = B: set i = K. Go to step 4.

If the length oK > B: hashK to obtain arl byte string, then append (B-L) zeros to
create a B-byte stringd{i.e., Ky = h(k) || 00...00). Go to step 4.

If the length oK < B: append zeros to the endkofo create a B-byte stringgie.g., if
K'is 20 bytes in length ari8l= 64, therK will be appended with 44 zero bytes x'00").

4 Exclusive-Or k with ipad to produce a B-byte string:okP ipad.

Append the stream of ddtextto the string resulting from step 4:
(Ko @ ipad) || text.

6 Apply H to the stream generated in step 5: H(@ipad) || text).

7 Exclusive-OrKq with opad: Ky @ opad.

8 Append the result from step 6 to step 7; @opad)|| H((K, @ ipad) ||text).

9 Apply H to the result from step 8: H((KD opad)|| H((K, © ipad) ||text)).
Source: [10 - 13]

STEP 1: A client and a server know a secret key. Thisedekey is never
directly sent during authentication. On the cligidie, a login form using JavaScript
has been created, which contains two fields: useenand password (after typing
encrypted). On the server side, an endpoint has $eePOST /logih, which will
be used to verify whether the specified user lagid encrypted password are in
the SQLite database. If the user verification iscegsful, the public key
(apiPublicKey will be retrieved from the database (individuad €ach user) on the
basis of username and encrypted password, and liexsent to the client.

This public key will be used to identify the us@onversely, if the verifica-
tion fails, the information will be returned: Acsedenied. Data from the login
form will be sent to the server endpoiRQST /logih by means of jQuery mecha-
nisms.

During transmission of a public key via the ser¥eis possible that an unau-
thorized person (hacker) using tools such as Faeegst{or something similar) for
example, might be able to sniff network traffic astéal the key. However, this
unauthorized person will not have the secret ABI &ed thus will not be able to
recreate the same HMAC HASH, which might be donéneyclient and the server.

365



Client - JQUERY

apiSecretkey

STEP I:

POSI
username,|

Server - Slim Framework

apiSecretkey

login
encrypted password

index.php

index.php
Login form
STER2; index.php
After logging
HMAC HASH

apiPublicKey

GET
timestamy. hash.

or Access denied

/test
apiPublicKey

SQLite Database
Middleware

index.php

Access or

Access denied

Middleware
HMAC
Authentication

STEP 2. HMAC HASH will be generated after correct verétion and log-
ging on the client side. A particular function atie following parameters were

Figure 2. HMAC authorization

implemented in this purpose:

- current UNIX timestamp - essentially, to determivieether the data sent to the
API have been sent in a short period of time. JarpSdoes not have a built-in

function that retrieves time so such function hasrbimplemented,

- user public keydpiPublicKey returned in the previous step by the server,

- secret keydpiSecretKeyonly known to the client and server,

- Javascript library €ryptoJ$S which offers encryption and hashing algorithms

(in this example a one-way hash function SHA1 heenlused).

Then the following data will be sent from the cligwithin the single HTTP
request to the server side: HMAC generated HASH, the 'sspublic key,

the current time UNIX.

On the server side the endpoirGHT /test which will receive the data sent

by the client, has been set.

It is worth mentioning that Slim Framework servittgauthenticate requests
uses middleware. Basically, this is the code tikatetes before the request actual-
ly reaches the intended route. As it is describettié Slim Framework middleware

366




documentation [8], when the middleware class rures éntry point, thecall()
method is activated. The first thing being examibgdhis method is whether the
specific route is on a list of 'allowed routes'.yAoutes that we want to declare as
'open’, that is not needing authentication, caradaed to the array in the class
constructor.

The route GET /test is available only by authenticated user on thevese
side. In thecall() method the verification, whether the timestammt $& a header
(current Unix time) has been sent within a givenqekof time, takes place.

If not, the access is blocked immediately. If $®nt the server generates on
its side HMAC HASH. A function available in PHRash_hmac()9] has been used
for this purpose, and the following parameters viemesferred:

- current UNIX timestamp,
- user public keydpiPublicKey sent by the client,
- secret keydpiSecretKeyonly known to the client and server.

If the HMAC HASH generated by the server correspotal the HMAC HASH
generated on the client side, the request is tluatel, in consequence, we get full
access to it.

Stage 5 — testing the RESTful servid@§. There are different ways to access
the REST resources and testing them by clients.nvlg use a cURL tool or
Postman.

cURL is a command-line tool for testing REST APIfe cURL library and
the cURL command give the user the possibilityreate requests and explore the
response.

Postman is an alternative tool that may be instailleaddition to Chrome.
It includes a JSON and XML viewer for rendering thega. It allows previewing
HTTP 1.1 requests as well as replaying, and organizquests for the future use.
Postman shares the same environment as the bramdecan display browser
cookies, too.

An advantage of Postman in comparison with cURR isser-friendly inter-
face for entering parameters so that the user boieseed to deal with commands
or scripts. Moreover, various authorization scheswesh as basic user authentica-
tion and digest access authentication are opebgt&bstman.

3. Conclusion

One weakness of many web-services that requireeatitiation is that
the username and password of the user making theeseare simply included as
request parameters [15]. Alternatively, some ussicbauthentication, which
transmits the username and password in an HTTPehegmtoded using Base64.
Basic authentication obscures the password, bus da¢ encrypt it. There is

367



a better way - using a HMAC (Keyed-Hash Messagééuntication Code) to sign
service requests with a secret key. HMAC providesderver and the client each
with a public and secret key. The public key iswnpbut the secret key is known
only to that specific server and that specificrdligl4]. The client creates a unique
HMAC, or hash, per request to the server by combiegequest data and hashing
that data, along with a secret key and sending paxt of a request. The server
receives the request and regenerates its own uhlty®C. The server compares
the two HMACSs, and, if they're equal, the clientrissted and the request is exe-
cuted. What makes HMAC more secure than MAC (Mesgaghentication Code)
is that the key and the message are hashed inasegteps.

There are two big advantages. The first is thaHRAC allows to verify the
password (or secret key) without requiring the ueegmbed it in the request, and
the second is that the HMAC also verifies the basiegrity of the request. If an
unauthorized person manipulated the request innaayyin transit, the signatures
would not match and the request would not be atittegad [15].

The cryptographic strength of the HMAC depends upun cryptographic
strength of the underlying hash function, the sizitgs hash output, and on the size
and quality of the key. This means that completah\dom key, where every bit is
randomly generated, is far better than set of dtars. The optimum size of the
key is equal to block size. If the key is too shin it is padded usually with
zeroes (which are not random). If the key is tawlthen its hash function is used.
The length of hash output is anyway block size.

The solution proposed in this article suggests derrative that is easy
to implement compared to other well-known methodsaathentication and
authorization.

REFERENCES

[1] Webber J., Parastatidis S., Robinson I. (20RBST in Practice: Hypermedia and
Systems Architectur®©'Reilly Media, 1 edition.

[2] Mehta B. (2014RESTful Java Patterns and Best Practjd@ackt Publishing.
[3] Richardson L., Amundsen M, Ruby S. (20RESTful Web AP)©O'Reilly Media.

[4] Fielding R.T. (2000Architectural Styles and the Design of Network-baSeftware
Architectures Chapter 5, Dissertation, University Of Californievine.

[5] JSON, (online) homepage: http://json.org/ (dateao€ess: 2016-02-05)
[6] XML, (online) homepage: http://www.w3.org/XML/ (dabf access: 2016-02-05)

[7]1 Slim Framework, a micro framework for PHP (onlife)mepage: http://www.slim-
framework.com/ (date of access: 2016-02-05)

[8] Slim Framework, Middleware-Overview (online) homgeahttp://docs.slim-
framework.com/#Middleware-Overview (date of acc@§d6-02-05)

368



[9]
[10]
[11]
[12]
[13]

[14]

[15]

hash_hmac(), (online) homepage: http://php.net/miéen/function.hash-hmac.php
(date of access: 2016-02-05)

Krawczyk H., Bellare M., and Canetti R. (19HMAC: Keyed-Hashing for Message
Authentication Internet Engineering Task Force, Requesfomments (RFC) 2104.

National Institute of Standards and Technology @@ecure Hash Standards (SHS)
Federal Information Processing Standards Publicat80-3.

NIST Special Publication (SP) 800-57 (206R§commendation for Key Management
— Part 1: General (Revised).

NIST Special Publication (SP) 800-107 (20@R¢commendation for Applications
Using Approved Hash Algorithms

Hash-based Message Authentication Code (HMAC) difim (online) homepage:
http://searchsecurity.techtarget.com/definitionfrthased-Message-Authentication-
Code-HMAC (date of access: 2016-02-05)

Using HMAC to authenticate Web service requestdji{e) homepage:
http://rc3.0rg/2011/12/02/using-hmac-to-authendeatb-service-requests/ (date of
access: 2016-02-05)

369



