Identyfikatory
Warianty tytułu
Zastosowanie potencjału Lennard-Jonesa do modelowania ruchu robotów
Języki publikacji
Abstrakty
The article proposes a method of controlling the movement of a group of robots with a model used to describe the interatomic interactions. Molecular dynamics simulations were carried out in a system consisting of a moving groups of robots and fixed obstacles. Both the obstacles and the group of robots consisted of uniform spherical objects. Interactions between the objects are described using the Lennard-Jones potential. During the simulation, an ordered group of robots was released at a constant initial velocity towards the obstacles. The objects’ mutual behaviour was modelled only by changing the value of the interaction strength of the potential. The computer simulations showed that it is possible to find the optimal value of the potential impact parameters that enable the implementation of the assumed robotic behaviour scenarios. Three possible variants of behaviour were obtained: stopping, dispersing and avoiding an obstacle by a group of robots.
W artykule zaproponowano metodę kontrolowania ruchu grupy robotów za pomocą modelu stosowanego do opisu oddziaływań międzyatomowych. Przeprowadzono symulacje metodą dynamiki molekularnej w układzie składającym się z ruchomych grup robotów oraz nieruchomych przeszkód. Zarówno przeszkody, jak i roboty składały się z jednolitych sferycznych obiektów. Oddziaływania między obiektami opisano za pomocą potencjału Lennard-Jonesa. Podczas symulacji, początkowo uporządkowana grupa robotów poruszała się ze stałą prędkością w kierunku przeszkód. Wzajemne zachowanie obiektów modelowano tylko poprzez zmianę wartości parametrów potencjału oddziaływań. Symulacje komputerowe wykazały, że możliwe jest znalezienie optymalnych wartości parametrów oddziaływania, które umożliwiają uzyskanie pożądanego zachowania robotów. W trakcie symulacji uzyskano trzy możliwe warianty zachowania: zatrzymywanie, rozpraszanie i omijanie przeszkód przez grupę robotów.
Rocznik
Tom
Strony
14--17
Opis fizyczny
Bibliogr. 15 poz., rys., tab.
Twórcy
autor
- Lublin University of Technology, Institute of Computer Science, Lublin, Poland
autor
- Lublin University of Technology, Institute of Computer Science, Lublin, Poland
Bibliografia
- [1] Alder B. J., Wainwright T.E.: Phase Transition for a Hard Sphere System. Journal of Chemical Physics 27/1957, 1208–1209, [DOI: 10.1063/1.1743957].
- [2] Blum C., Merkle D.: Swarm Intelligence: Introduction and Applications. Natural Computing Series. Springer 2008.
- [3] Brambilla M., Ferrante E., Birattari M., Dorigo M.: Swarm robotics: a review from the swarm engineering perspective. Swarm Intelligence 7/2013, 1–41, [DOI: 10.1007/s11721-012-0075-2].
- [4] Engelbretch A.P.: Computational Intelligence, John Wiley and Sons. England 2007.
- [5] Farrelly C., Kell D.B., Knowles J.: Ant Colony Optimalization and Swarm Intelligence. Springer 2008.
- [6] Jones J.E.: On the Determination of Molecular Fields. Royal Society 106/1924, 463–477, [DOI: 10.1098/rspa.1924.0082].
- [7] Maxim P.M., Spears W.M., Spears D.F.: Robotic Chain Formations. IFAC Proceedings Volumes 42/2009, 19–24.
- [8] Nouyan S., Dorigo M.: Chain Based Path Formation in Swarms of Robots. ANTS Workshop 2006, 120–131, [DOI:10.1007/11839088_11].
- [9] Olfati-Saberras R.: Flocking for multi-agent dynamic systems: algorithms and theory. IEEE Transactions on Automatic Control 51/2006, 401–420, [DOI: 10.1109/TAC.2005.864190].
- [10] Pinciroli C., Birattari M., Tuci E., Dorigo M., et al.: Self-Organizing and Scalable Shape Formation for a Swarm of Pico Satellites. Proceedings of the 2008 NASA/ESA Conference on Adaptive Hardware and Systems (AHS 2008), 2008, 57–61, [DOI: 10.1109/AHS.2008.41].
- [11] Shimizu M., Ishiguro A., Kawakatsu T., Masubuchi Y., Doi M.: Coherent Swarming from Local Interaction by Exploiting Molecular Dynamics and Stokesian Dynamics Methods. Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003), 2003, 1614–1619, [DOI: 10.1109/IROS.2003.1248875].
- [12] Son J.H., Ahn H.S., Cha J.: Lennard-Jones potential field-based swarm systems for aggregation and obstacle avoidance. International Conference on Control, Automation and Systems (ICCAS 2017), 2017, 1068–1072, [DOI: 10.23919/ICCAS.2017.8204374].
- [13] Stukowski A.: Visualization and analysis of atomistic simulation data with OVITO – the Open Visualization Tool. Modelling and Simulation in Materials Science and Engineering 18/2009, 015012, [DOI: 10.1088/0965-0393/18/1/015012].
- [14] Suárez P., Iglesias A., Gálvez A.: Make robots be bats: specializing robotic swarms to the Bat algorithm. Swarm and Evolutionary Computation 44/2019, 113–129, [DOI: 10.1016/j.swevo.2018.01.005].
- [15] Sydney N., Paley D.A., Sofge, D.: Physics-inspired motion planning for information-theoretic target detection using multiple aerial robots. Autonomous Robots 41/2017, 231–241, [DOI: 10.1007/s10514-015-9542-0].
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-114da74d-994b-473e-91e3-0534e8b11378