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1. Introduction 

The semi-Markov processes were introduced 

independently and almost simultaneously by P. Levy, 

W.L. Smith, and L.Takacs in 1954-55.  The essential 

developments of semi-Markov processes theory were 

proposed by Cinlar [3], Koroluk & Turbin [13], 

Limnios & Oprisan [14]. We would apply only semi-

Markov processes with a finite or countable state 

space. The semi-Markov processes are connected to 

the Markov renewal processes.  

The semi-Markov processes theory allows us to 

construct many   models of the reliability systems 

evolution   through the time frame. 

 

2. Definition of semi-Markov processes with a 

discrete state space   

Let S be a discrete (finite or countable) state space and 

let ),0[ R , ,...}2,1,0{0 N . Suppose, that 

,...2,1,0,, nnn   are the random variables defined 

on a joint probabilistic space ( , , P) with values 

on S and R  respectively. A two-dimensional random 

sequence ,...}2,1,0),,{( nnn   is called a Markov 

renewal chain if for all  

0010 ,,...,,,,...., NnRttSiii nn   :  

 

1.  000011 ,,...,,|, tititjP nnnnn      

 

     ),(|, 11 tQitjP ijnnn                     (1)                                                   

               

2. 
oio piPiP  }{}0,{ 0000                     (2) 

hold.  

From the above definition it follows that a Markov 

renewal chain is a homogeneous two-dimensional  

Markov chain such that the transition probabilities do 

not depend on the second component. It is easy to 

notice that a random sequence ,...}2,1,0:{ nn  is a 

homogeneous one-dimensional Markov chain with the 

transition probabilities 

 

   
.)(lim}|{ ! tQijPp ij

t
nnij


                       (3) 

 

The matrix  

                                                                                          

    ,,:)()( SjitQt ij Q                                       (4) 

 

Is called a Markov renewal kernel. Both Markov 

renewal kernel and the initial distribution define the 

Markov renewal chain. This fact allows us to 

construct a semi-Markov process.  

Let    
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A stochastic process  0:)( ttX  given by the 

following relation   

 

Grabski Franciszek  
Naval University, Gdynia, Poland 

 

 

 

Applications of semi-Markov processes in reliability 
 

 

 

 

 

 

 
Keywords 

semi-Markov processes, reliability, random failure rate, cold standby system with repair 

 

Abstract 
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   ntX )(   for  ),[ 1 nnt                                   (5) 

 

is called   a semi-Markov process on  S  generated by 

the  Markov renewal chain related to the kernel  

0),( ttQ  and the initial distribution p. 
Since the trajectory of the semi-Markov process keeps 

the constant values on the half-intervals ),[ 1nn   and 

it is a right-continuous function, from 

equality nnX  )( , it follows that the sequence 

 ,...2,1,0:)( nX n  is a Markov chain with the 

transition probabilities matrix 

 

   ],:[ Sjipij P                                                 (6) 

 

The sequence  ,...2,1,0:)( nX n  is called an 

embedded Markov chain in a semi-Markov process 

 0:)( ttX .  

The function  

    

   

 jXiXtPtF nnnnij   )(,)(|)( 11 

 
 

            
ij

ij

p

tQ )(
                                                         (7) 

 

is a cumulative probability distribution of a random 

variable ijT  that is called holding time of a state i , if 

the next state will be j . From (11) we have 

 

   
)()( tFptQ ijijij  .                                                   (8) 

    

 The function  

 

     



Sj

ijnnni tQiXtPtG )()(|)( 1       (9)  

                                      

is a cumulative probability distribution of a random 

variable 
iT  that is called waiting time of  the state i . 

The waiting time iT  means the time being spent in 

state i  when we do not know the successor state. 

A stochastic process  0:)( ttN  defined by 

 

   ntN )(   for   ),[ 1 nnt                               (10)                                                        

 

is called a counting process of the semi-Markov 

process  0:)( ttX .                       

The semi-Markov process  0:)( ttX  is said to be 

regular if for all 0t   

 

   1})({ tNP                           

                                                           

It means that the process  0:)( ttX  has the finite 

number of state changes on a finite period.  

Every Markov process  0:)( ttX  with the discrete 

space S and the right-continuous trajectories keeping 

constant values on the half-intervals, with the 

generating matrix of the transition rates 

],:[ Sjiij   ,  iii 0  is the semi-

Markov process with the kernel    

 

   ],:)([)( SjitQt ij Q  ,                 

                                

Where 

 

   0,)1()( 


teptQ
tii

ijij


,  

 

   jip
i

ij

ij  for



 and 0iip  

 

In the reliability models the parameters and 

characteristics of a semi-Markov process are 

interpreted as the reliability characteristics and 

parameters of the system.  

 

3. Transition probabilities of a semi-Markov 

process 

The transition probabilities of the semi-Markov 

process are introduced as follows: 

 

     .,,)0(|)()( SjiiXjtXPtPij         (11)                       

 

Applying the Markov property of the semi-Markov 

process at the jump moments, as a result, we obtain 

Markov renewal equation for the transitions 

probabilities, [4], [12] 

 

   ,)()()](1[)(
0

  
Sk

t

ikkjiijij xdQxtPtGtP     (12)                  

   Sji , . 

 

Using Laplace-Stieltjes transformation we obtain the 

system of linear equation 

 

   ,)(~)(~)](~1[)(~

Sk

kjikiijij spsqsgsp               (13) 

   Sji ,   

                       

where the transforms 

 

   )()(~

0

tdPesp ij
st

ij 



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are unknown while the transforms   

   

   ,)()(~

0

tdQesq ik
st

ik 



 )()(~

0

tdGesg i
st

i 



 

 

are given. 

Passing to matrices we obtain the following equation    

                                                     

   )(~)(~)](~[)(~ sssIs pqgp  ,                               (14) 

 

where   

    

   ],:)(~[)(~ Sjisps ij p , ],:)(~[)(~ Sjisqs ij q , 

 

   
],:))(~1([)(~ Sjisgs iij  g .                                     

 

In many cases the transitions probabilities )( tPij  and 

the states probabilities 

 

     ,,)()( SjjtXPtPj                                  (15)     

 

approach constant values for large t   

 

   )(lim),(lim tPPtPP j
t

jij
t

ij


  .                           (16)                  

 

To formulate the appropriate theorem, we have to 

introduce a random variable 

 

   
 jXNn nj  )(:min  ,                             (17)  

 

That denotes the time of first arrival at state j. A 

number 

 

   
})(|{ iXPf njij                                   (18) 

 

is the probability that the chain that leaves state i will 

sooner or later achieve the state j. 

As a conclusion of theorems presented by Korolyuk 

and Turbin [13], we have obtained following theorem  

 

Theorem 1. 

Let  0ttX :)(  be a semi-Markov process with a 

discrete state space S and continuous kernel 

 .,:)()( SjitQt ij Q  If the embedded Markov 

chain  ,...2,1,0:)( nX n , contains one positive 

recurrent class C, such that for each state 

1,,  ijfCjSi  and ,,)(0 SiTE i   then     

      

   








Si
jj

jj

j
t

jij
t

ij
TE

TE
tPPtPP

)(

)(
)(lim)(lim




     (19) 

 

where ],[ Sjj    is the unique stationary 

distribution of the embedded Markov chain that 

satisfies system of equations. 

 

   

.1,, 
 Si

ijij
Si

i Sjp                              (20) 

 

4. First passage time from the state i to the 

states subset A.  

The random variable  

 

   
,

AA  
 

 

where 

 

   
 ,)(:min AXNn nA  

 
 

denotes the time of first arrival of semi-Markov 

process, at the set of states A.  

The function    

 

    .)0(|)( iXtPt AiA                                 (21) 

 

is the cumulative distribution of the random variable 

iA  that denotes the first passage time from the state i  

to the states subset   A.  

 

Theorem 2.   [4], [13]                                                   

For the regular semi-Markov processes such that,  

 

   AiiXPf AiA
 ,1})0(|{ ,           (22) 

 

the distributions AitiA
 ,)(  are proper and they 

are the unique solutions of the system of equations   

   

   ),()()()(
0

xdQxttQt ik
Sk

t

kA
Aj

ijiA
 



    

   'Ai                  

 

Applying Laplace-Stieltjes transformation we obtain 

the system of linear equations  

 

   ',)(~)(
~

)(~)(
~

'

Aisqssqs
Ak

ikkA
Aj

ijiA 


     (23) 

 

with unknown transforms  

 



 Grabski Franciszek 

Applications of semi-Markov processes in reliability 

 

 130 

   .)()(
~

0

tdes iA
st

iA 


  

 

Generating matrix form we get equation 

 

     )(
~

)(~)(~
'' sssI AA bφq  ,                                   (24) 

 

where 

 

   ],:)(~[)(~],',:[ ' AjisqsAji ijAij  qI   

 
are the square matrices and 

 

   

 

T

ij
Aj

T

iAA

Aisqs

Aiss















':)(~)(
~

,':)(φ~)(~
'

b

φ

 

 

are the one-column matrices of transforms. The 

formal solution of the equation is 

 

     )(
~

)(~)(~ 1

'' ssIs AA bqφ


 . 

 

To solve this equation we use any computer programs, 

for example MATHEMATICA. Obtaining the inverse 

Laplace transform is much more complicated. 

It is essentially simpler to find the expected values 

and the second   moment of the random variables 

AiiA
 , . If the second moments of the waiting 

times AiTi
,  are positive and commonly bounded, 

and Aif iA
 ,1
 
, then the expected values of the 

random variables AiiA
 ,  are the unique solution 

of equation  

 

     ''' AAAI TΘP  ,                                              (25) 

 

where 

 

      ,',:,',: ' AjipAji ijAij  PI   

 

   
   TiA

T

iAA AiTEAiE ':)(,':)( ''  TΘ
 

 

and the second moments of the time to failure are the 

unique solution of equation  

 

   
  'BΘPI AAA'  

2                                               (26)                    

 

where 

 

   
   ,',:,',: ' AjipAji ijAij  PI   

 

   
    ,':,':)( '

22 T

iA

T

iAA AibAiE  BΘ
 

 

    
 '

)()(2)(
Ak

kAikikii ETEpTEb . 

 

5. Semi-Markov model of the cold standby 

system with repair 

The problem is well known in reliability theory 

(Barlow & Proschan [1]). The model presented here is 

some modification of the model that was considered 

by Brodi & Pogosian [2].  

 

5.1. Description and assumptions 

A system consists of one operating component, an 

identical stand-by component and a switch, (Figure1).   

  

                        
2

1

 

Figure 1. Diagram of the system 

 

When the operating component fails, the spare is put 

in motion by the switch immediately.   The failed unit 

(component) is repaired. There is a single repair 

facility. The repairs fully restore the components i.e. 

the components repairs means their renewals. The 

system fails when the operating component fails and 

component that was sooner failed in not repaired yet 

or when the operating units fail and the switch fails. 

We assume that the time to failure of the operating 

components are represented by the independent copies 

of a non-negative random variable   with distribution 

given by a probability density function (pdf) 

0),( xxf . We suppose that the lengths of the repair 

periods of the components are represented by the 

identical copies of the non-negative random variables 

  with cumulative distribution function (CDF) 

).()( xPxG    Let U   be a random variable having 

binary distribution  

   ,10,1,0,)1()()( 1   akaakUPkb kk
  

where 0U , when a switch is failed at the  moment 

of the operating component failure, and  1U ,  when 

the switch work at that moment. We suppose that the 

whole failed system is replaced by the new identical 
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system. The replacing time is a non-negative random 

variable   with CDF )()( xPxH   .  

1

2













t




























 

Figure 2. Reliability evolution of the standby system 

 

Moreover we assume that the all random variables, 

mentioned above are independent. 

 

5.2. Construction of the semi-Markov model  

To describe reliability evolution of the system, we 

have to define the states and the renewal kernel. We 

introduce the following states: 
0 - the system is failed 

1 - the failed component is repaired, spare is operated  

2 - both operating component and spare are “up”. 

Let ,...,,0 210
  denote the instants of the states 

changes, and }0:)({ ttY  be a random process with 

the state space }2,1,0{S , which keeps constant 

values on the half-intervals ,...1,0),,[ 1




nn   and is 

right-continuous.  The realization of this process is 

shown in Figure 1. This process is not semi-Markov, 

because the condition (1) of definition (2) is not 

satisfied for all instants of the state changes of the 

process.  

Let us construct a new random process a following 

way. Let  00   and ,..., 21   denote the instants of 

the system components failures or the instants of 

whole system renewal. The random process 

}0:)({ ttX  defined by equation 

 

   ),[for)()(,0)0( 1 nnn tYtXX   

 

is the semi-Markov process.  

To have semi-Markov process as a model we must 

define its initial distribution and all elements of its 

kernel 

 

   



















0)()(

0)()(

)(00

)(

2120

1110

02

tQtQ

tQtQ

tQ

tQ  

For 0t  we obtain 

   ),()()(02 tHtPtQ     

 

   

,)()()(
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),()(

0
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 
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t
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xdFxGatF

xdFxGaxdFxG

tUP

tPtQ





   

   ,)()(),,1()(
011 
t

xdFxGatUPtQ   

 

   ),()1(),0()(20 tFatUPtQ    

 

   ).(),1()(21 taFtUPtQ    

We assume that, the initial state is 2. It means that an 

initial distribution is  

    100)0( p  . 

Hence, the semi-Markov model is constructed. 

 

5.3. The reliability characteristics 

The random variable iA , that denotes the first 

passage time from the state  i  to the states subset   A, 

for  2i  and  }0{A  in our model, represents the 

time to failure of the system. The function 

 

   0,)(1)()( 2020  tttPtR                (27) 

 

is the reliability function of the considered cold 

standby system with repair.  

System of linear equation (23) for the Laplace-

Stieltjes transforms of the functions  

 

   ,2,1,0,)(0  itti   

 

in this case is   
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~
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~

11101010 sqssqs    
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~
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~
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The solution is 
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   .
)(~1

)(~)(~
)(~)(

~
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1021
2020
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sqsq
sqs


                         (28) 

 

Hence, we obtain the Laplace transform of the 

reliability function  
 

   .
)(

~
1

)(
~ 20

s

s
sR


                                               (29) 

 

The transition probabilities matrix of the embedded 

Markov chain in the semi-Markov process 

 0:)( ttX  is 

 

   



















0

0

100

P
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1110
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Where 

 

   
1110 1 pp 

 
 

   
,)()(),1(

011 


xdFxGaUPp 
 

 

   .)1(,1 2120 aUPpap   

Using formula (9) we obtain the CDF of the waiting 

times of  .2,1,0, iTi  
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The equation (25) in this case has form 
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The solution is 
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We will apply theorem 1 to calculate the limit 

probability distribution of the state. Now, the system 

of linear equation (20) is 
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Since, the stationary distribution of the embedded 

Markov chain is 
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Using formula (19) we obtain the limit distribution of 

semi-Markov process 
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5.4. Conclusion 

The expectation )( 20E  denoting the mean time to 

failure is 
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Let us notice, that the cold standby determines 

increase the meantime to failure 
111

1
p

a


   times. 

The limiting availability coefficient of the system is 
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6. Semi-Markov process as the reliability 

model of the operation with perturbation  

Semi-Markov process as the reliability model of 

multi-stage operation was considered by F. Grabski in 

[8] and [10]. Many operations consist of some 

elementary tasks, which are realized in turn. Duration 

of the each task realization is assumed to be positive 

random variable.  Each elementary operation may be 

perturbed or failed. The perturbations increase the 

time of operation and the probability of failure as 

well. 

 

6.1. Description and assumptions 

Suppose, that the operation consists of n stages which 

following in turn. We assume that duration of an i-th 

stage, (i =  1, ... , n)  is a nonnegative random variable 

nii ,,1;   with a cumulative probability 

distribution     
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t
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where )(xf i  denotes its probability density function 

in an extended sense.  

Time to failure of the operation on the i-th stage 

(component) is the nonnegative random variable 
i , 

ni ,,1  with exponential distribution 
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The operation on each step may be perturbed. We 

assume that no more then one event causing 

perturbation on each stage of the operation may occur.  

Time to event causing of an operation perturbation on 

i-th stage is a nonnegative random variable 

nii ,,1;   with exponential distribution 
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The perturbation degreases the probability of the 

operation fail. We suppose that time to failure of the 

perturbed operation on the i-th stage is the 

nonnegative random variable nii ....,2,1,    that 

has the exponential distribution with a parameter 

ii    
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We assume that the operation is cyclical.   

We assume that random variables 

niiiii ,...,1,,,,,   are mutually independent. 

  

6.2. Semi-Markov model 

To construct reliability model of operation, we have to 

start from definition of the process states. 

Let 
jie , i=1,...,n, j=0,1  denotes j-th reliability state 

on  i-th step of the operation where, j=0 denotes 

perturbation and  j=1 denotes success 

12 ne - failure (un-success) of the operation 

11e - an initial state. 

For convenience we numerate the states 
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,1212  ne n  

 

Under the above assumptions, stochastic process 

describing of the overall operation in reliability 

aspect, is a semi-Markov process }0:)({ ttX  with 

a space of states }12,2,...,2,1{  nnS  and flow 

graph shown in Figure 3.  

 

1 2 n-1 n
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1

n+
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2n-

1
2n

2n

+1  

Figure 3. Transition graph for n-stage cyclic operation 

 

To obtain a semi-Markov model we have to define all 

nonnegative elements of semi- Markov kernel 
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First, we define transition probabilities from the state i 

to the state j for time not greater than t for i=1,…,n-1.  
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If on i-th stage a perturbation has happened the 

transition probability to next state for time less then or 

equal to  t  is   
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To find the triple integral over the region D, we apply 

change of coordinates: 
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Let us notice that  
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Finally, we obtain 
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Therefore the semi-Markov reliability model of 

operation has been constructed.  

 

6.3. Two-stage cyclical operation We will consider 3 models for n=W 

We will investigate particular case of that model, 

assuming 2n . A transition matrix for the semi-

Markov model of the 2-stage cyclic operation in 

reliability aspect takes the following form 
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That model allows us to obtain some reliability 

characteristics of the operation. The random 

variable 15  denoting the first passage time from state 

1 to state 5 in our model, means time to failure of the 

operation. The Laplace-Stieltjes transform for the 

cumulative distribution function of that random 

variable we will obtain from a matrix equation (25). 

In this case we have }5{},4,3,2,1{  AA  and 
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From the solution of equation (24) we obtain Laplace-

Stieltjes transform of the cumulative distribution 

function of the random variable 15  denoting time to 

failure of the operation 
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The Laplace transform of the reliability function is 

given by the formula  
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6.4. Examples 

Example 1 

We suppose that 
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Laplace-Stieltjes transform of these functions are: 
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For   1,01  ;  12,02  ;  002,01  ;    001,02  ;  

02,01  ;   04,02  ;  01,01  ; 01,01  , 

applying  (33) and (34), with help of 

MATHEMATICA computer program, we obtain the  

density function and  the reliability function as inverse 

Laplace transforms . 

The density function is given by the formula 
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This function is shown in Figure 4. 

The reliability function is 
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Figure 4.  The density function the time to failure of 
  2-stage cyclic operation 

 

This function is shown on Figure 5. 
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Figure 5. The reliability function of 2-stage cyclic 

operation 
 

Mean time to failure we can find solving the matrix 

equation 
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From this equation we obtain the mean time to failure 
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Example 2 

Now we assume that 
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It means that the duration of the stages are determined 

and they are equal ii L  for  i = 1,2. 

In this case the elements of Q(t) are:  
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The Laplace’a-Stieltjes transform of these functions 

are: 
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The mean time to failure we can find solving the 

matrix equation (35), where                      
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For the same  parameters 1,01  ;  12,02  ;  

002,01  ; 001,02  ; 02,01  ; 04,02  ;  

01,01  ; 01,01  , 

and  
1

1
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
L  i  

1

2
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
L , the mean time to failure of 

the operation is 

 

   284.366)( 15 E .  

 

In previous case the mean time to failure is 

 

   378,275)( 15 E . 

 

6.5. Conclusion   

It means that for the determined duration of the stages 

mean time to failure of the operation is essentially 

greater than for exponentially distributed duration of 

the stages with the same expectations. 

To assess reliability of the many stage operation we 

can apply a semi-Markov process. Construction of the 

semi-Markov model consist in defining a kernel of 

that process.   A way of building   the kernel for the 

semi-Markov model of the many stage operation is 

presented in this paper. From Semi-Markov model we 

can obtain many interesting parameters and 

characteristics for analysing reliability of the 

operation.  

From presented examples we get conclusion that for 

the determined duration of the stages, mean time to 

failure of the operation is essentially greater than for 

exponentially distributed duration of the stages with 

the same expectations. 

 

7. Semi-Markov process as a failure rate 

The reliability function with semi-Markov failure rate 

was considered by Kopociński & Kopocińska [11], 

Kopocińska [12] and by Grabski [4], [6], [9]. Suppose 

that the failure rate }0:)({ tt  is the semi-Markov 

process with the discrete state space },:{ JjS j    
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with the kernel  
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In [6] it is proved, that for the regular semi-Markov 

process }0:)({ tt  the conditional reliability 

functions JittRi  ,0,)(  defined by (17), satisfy 

the system of equations                            
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Applying the Laplace transformation we obtain the 

system of linear equations   
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The conditional mean times to failure we obtain from 

the formula 
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The unconditional mean time to failure has a form 
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7.1. Alternating random process as a failure 

rate 

Assume that the failure rate is a semi-Markov process 

with the state space },{ 10 S  and the kernel  
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where ),(),( 10 tGtG  are the cumulative probability 

distribution functions with nonnegative support.  

Suppose that at least one of the functions is absolutely 

continuous with respect to the Lebesgue measure. Let   

],[ 10 ppp   be an initial probability distribution of 

the process. That stochastic process is called the 

alternating random process. In that case the matrices 

from the equation (20) are 
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The solution of (20) takes the form 
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The Laplace transform of the unconditional reliability 

function is 
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Example 3. 

Assume that  
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Suppose that an initial state is 0 . Hence the initial 

distribution is ]01[)0( p  and the Laplace 

transform of the unconditional reliability function 

is )(
~
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0 sRsR  .  Now the equation (20) takes the 

form of 
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For    
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Using the MATHEMATICA computer program we 

obtain the reliability function as the inverse Laplace 

transform.  
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Figure 6 shows the reliability function.  
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Figure 6. The reliability function from example 2      

                                          

The corresponding density function  
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is shown in  Figure 7 
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Figure 7. The density function from example 2 
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8. Conclusion 

The semi-Markov processes theory is convenient for 

description of the reliability systems evolution   

through the time.  The probabilistic characteristics of 

semi-Markov processes are interpreted as the 

reliability coefficients of the systems. If  A represents 

the subset of failing states and  i  is an initial state, the 

random variable iA  designating the first passage 

time from the state  i  to the states subset   A, denotes 

the time to failure of the system. Theorems of semi-

Markov processes theory allows us to find the 

reliability characteristic, like the distribution of the 

time to failure, the reliability function, the mean time 

to failure, the availability coefficient of the system 

and many others. We should remember that semi-

Markov process might be applied as a model    of the 

real system reliability evolution, only if the basic 

properties of the semi-Markov process definition are 

satisfied by the real system. 
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