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Abstract

The basic definitions and theorems from the semi-Markov processes theory are discussed in the paper. The semi-
Markov processes theory allows us to construct the models of the reliability systems evolution within the time

frame.

Applications of semi-Markov processes in reliability are considered. Semi-Markov model of the cold

standby system with repair, semi-Markov process as the reliability model of the operation with perturbations and
semi-Markov process as a failure rate are presented in the paper.

1. Introduction

The semi-Markov processes were introduced
independently and almost simultaneously by P. Levy,
W.L. Smith, and L.Takacs in 1954-55. The essential
developments of semi-Markov processes theory were
proposed by Cinlar [3], Koroluk & Turbin [13],
Limnios & Oprisan [14]. We would apply only semi-
Markov processes with a finite or countable state
space. The semi-Markov processes are connected to
the Markov renewal processes.

The semi-Markov processes theory allows us to
construct many  models of the reliability systems
evolution through the time frame.

2. Definition of semi-Markov processes with a
discrete state space

Let S be a discrete (finite or countable) state space and
let R, =[0,0), N,={012,...}. Suppose, that
&, 3,n=012,... are the random variables defined
on a joint probabilistic space (£2, @, P) with values
on Sand R, respectively. A two-dimensional random
sequence {(&,, %,),n=012,...} is called a Markov
renewal chain if for all

lgyeroisdp g, 1 €S, 1g,..,t, €R,, neNy:

41
1. P{‘fml =], ‘9n+l§t|§n =i, G =t,...5 :io’ %o :to}

:P{§n+1:j119n+13t|§n :i}: Qij ®, 1)
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2. P{&, =iy, 9o=0}=P{S =io}=p;, )
hold.

From the above definition it follows that a Markov
renewal chain is a homogeneous two-dimensional
Markov chain such that the transition probabilities do
not depend on the second component. It is easy to
notice that a random sequence {&, :n=012,..} isa

homogeneous one-dimensional Markov chain with the
transition probabilities

Py =P =1lén = '}Zt“lg Q; (1) 3)
The matrix
QM) =[Q;): i, jes] (4)

Is called a Markov renewal kernel. Both Markov
renewal kernel and the initial distribution define the
Markov renewal chain. This fact allows us to
construct a semi-Markov process.

Let

T,=% +..+9,, 7, =sup{r, :neN,}

A stochastic process {X(t):t>0} given by the
following relation
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X (t) = é:n for te [Tn' 2—n+1) (5)

is called a semi-Markov process on S generated by
the Markov renewal chain related to the kernel
Q(t), t>=0 and the initial distribution p.
Since the trajectory of the semi-Markov process keeps
the constant values on the half-intervals [z, 7, ) and
it is a right-continuous  function, from
equality X (z,,) =¢&,, it follows that the sequence
{X(z,):n=012,..} is a Markov chain with the
transition probabilities matrix
P:[pij:i’jes] (6)
The sequence {X(z,):n=0412,..} is called an
embedded Markov chain in a semi-Markov process
{X(t):t>0}.
The function

Fi ) =P{r,.,—7, <t| X(z,) =i, X (1) = |}

Q0
P

(")

is a cumulative probability distribution of a random
variable T; that is called holding time of a state i, if

the next state will be j.From (11) we have

Q; (M) =p;Fy; (0. 8)

The function

Gi(t)=P{rn+1—rnst|X(rn)=i}=szQi,-(t) ©)

is a cumulative probability distribution of a random
variable T, that is called waiting time of the state i.
The waiting time T, means the time being spent in
state 1 when we do not know the successor state.

A stochastic process {N(t):t >0} defined by
N(t)=n for te[r,, 7,.4) (10)
is called a counting process of the semi-Markov

process {X(t):t>0}.
The semi-Markov process {X(t):t>0} is said to be
regular if forall t >0

P{N(t) < oo} =1
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It means that the process {X(t):t>0} has the finite
number of state changes on a finite period.
Every Markov process {X(t):t>0} with the discrete

space S and the right-continuous trajectories keeping

constant values on the half-intervals, with the
generating matrix of the transition rates
A=[g;: 1,]€8], 0<—a =a; <o is the semi-

Markov process with the kernel
Q) =[Qy(t):i,jeS],

Where
Q;(t)=p;L-e 1), t=0,

Qi L
p; =—fori=jand p; =0
a;
In the reliability models the parameters and
characteristics of a semi-Markov process are
interpreted as the reliability characteristics and
parameters of the system.

3. Transition probabilities of a semi-Markov
process

The transition probabilities of the semi-Markov
process are introduced as follows:

P,M)=P{X(®)=jl X0 =i}, i,jeS. (1)

Applying the Markov property of the semi-Markov
process at the jump moments, as a result, we obtain
Markov renewal equation for the transitions
probabilities, [4], [12]
t
Py () =6;[1-G; (H]+ kZSI Py (t=x)dQy (%),  (12)
€30
i,jesS.
Using Laplace-Stieltjes transformation we obtain the
system of linear equation

5ij (s)=0;1- g; (9)]+ kzsam (s) 5kj (s), (13)

i,jeS

where the transforms

By (s) = Ie“de,- (t)
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are unknown while the transforms
Qi (5) = Je_Stink t), gi(s)= je_Sthi (t)
0 0

are given.
Passing to matrices we obtain the following equation

p(s) =[1 -g(s)]1+q(s)p(s), (14)
where
p(s) =[p; (s):1,j €S], A(s) =[q;(s):i, jeS],
g(s) =[6; 1 - i (s)):i, j € S

In many cases the transitions probabilities P;(t) and
the states probabilities

Pt =P{X® =]} jeS, (15)
approach constant values for large t
Py =lim Py (), P; =lim P, (1) . (16)

To formulate the appropriate theorem, we have to
introduce a random variable

Aj=minfne N: X(z,) = j}, (17)

That denotes the time of first arrival at state j. A
number

f; =P{A; <oo| X(z,) =1} (18)

is the probability that the chain that leaves state i will
sooner or later achieve the state j.

As a conclusion of theorems presented by Korolyuk
and Turbin [13], we have obtained following theorem

Theorem 1.

Let {X (t):t ZO} be a semi-Markov process with a
discrete state space S and continuous Kkernel
Q) =|Q;): i,jeS|. If the embedded Markov
chain {X(z,):n=012,.}, contains one positive
recurrent class C, such that for each state
ieS,jeC, fjy=1and 0<E(T;)<x,i€S, then
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ﬂjE(Tj)

19
= (19)

P = tl'_)”ol P; (t) =P, =t|'_[2 P, (t)=

where 7z =[z;, jeS] is the unique stationary

distribution of the embedded Markov chain that
satisfies system of equations.

2 =1

ieS

_ZS”i Py =7, J€S, (20)

4. First passage time from the state i to the
states subset A.

The random variable
O, = Taps
where
A,=minfneN:X(zr,) €A},
denotes the time of first arrival of semi-Markov

process, at the set of states A.
The function
D, (t) = P{®,<t| X (0) =i} (21)

is the cumulative distribution of the random variable
0., that denotes the first passage time from the state i
to the states subset A.

Theorem 2. [4], [13]
For the regular semi-Markov processes such that,

f,=P{A, <o X(0)=i}=1, icA, (22)

the distributions ®,,(t), i< A" are proper and they
are the unique solutions of the system of equations

©,0=%,0,0)+ 3 [@(t-0dQ, (),
icA

Applying Laplace-Stieltjes transformation we obtain
the system of linear equations

%A (s)= JZA Ga,- (s)+ szfzkA ()0 (8), ie A" (23)

with unknown transforms
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Fn(5) = Je 00, (0).
Generating matrix form we get equation
(1 =8 (5) @n(s) =b(s), (24)
where
1=[5; 1, Je AL, G (8) =[G (s):i, je Al

are the square matrices and

P (s)=[0in(s):i e AT,

]
B(s){z q; (s):ieA}
jeA

are the one-column matrices of transforms. The
formal solution of the equation is

Pa(8)=(1-Tn(s)) "b(s).

To solve this equation we use any computer programs,
for example MATHEMATICA. Obtaining the inverse
Laplace transform is much more complicated.

It is essentially simpler to find the expected values
and the second moment of the random variables
®;r, 1€ A’. If the second moments of the waiting

times T,,i € A" are positive and commonly bounded,
and f,, =1, ieA’,then the expected values of the
random variables ®;,,i € A" are the unique solution
of equation

(I —Py ) 6A' = TA' ) (25)

where

1=[5,:i,jeA] Py =[p;:i,jecA]

0, =[E©,): icA], Ty =[ET):ic AT

and the second moments of the time to failure are the
unique solution of equation

(1-Py)O% =Bx (26)

where
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1=|8; i, ie A, Py =|p; i, j e A}
02 =[E@%): icA] B, =[b:icAT,
b, = E(ri)+2kZ:A'pik E(Ti)E(©) -

5. Semi-Markov model of the cold standby
system with repair

The problem is well known in reliability theory
(Barlow & Proschan [1]). The model presented here is
some modification of the model that was considered
by Brodi & Pogosian [2].

5.1. Description and assumptions

A system consists of one operating component, an
identical stand-by component and a switch, (Figurel).

N\

Figure 1. Diagram of the system

When the operating component fails, the spare is put
in motion by the switch immediately. The failed unit
(component) is repaired. There is a single repair
facility. The repairs fully restore the components i.e.
the components repairs means their renewals. The
system fails when the operating component fails and
component that was sooner failed in not repaired yet
or when the operating units fail and the switch fails.
We assume that the time to failure of the operating
components are represented by the independent copies
of a non-negative random variable ¢ with distribution
given by a probability density function (pdf)
f(x), x> 0. We suppose that the lengths of the repair
periods of the components are represented by the
identical copies of the non-negative random variables
y with cumulative distribution function (CDF)

G(X)=P(y <x). Let U be a random variable having
binary distribution

b(k)=PU =k)=a*(1-a)**,k=010<a<l,

where U =0, when a switch is failed at the moment
of the operating component failure, and U =1, when
the switch work at that moment. We suppose that the
whole failed system is replaced by the new identical
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system. The replacing time is a non-negative random
variable n with CDF H(x)=P(7<X).

w oo

Figure 2. Reliability evolution of the standby system

Moreover we assume that the all random variables,
mentioned above are independent.

5.2. Construction of the semi-Markov model

To describe reliability evolution of the system, we
have to define the states and the renewal kernel. We
introduce the following states:

0 - the system is failed

1 - the failed component is repaired, spare is operated

2 - both operating component and spare are “up”.

Let 0=7,, 7;,7,,...denote the instants of the states
changes, and {Y (t):t >0} be a random process with
the state space S ={0,1,2}, which keeps constant

values on the half-intervals [z,,7.,,),0L... and is
right-continuous. The realization of this process is
shown in Figure 1. This process is not semi-Markov,
because the condition (1) of definition (2) is not
satisfied for all instants of the state changes of the
process.

Let us construct a new random process a following

way. Let 0=z, and 7,,7,,... denote the instants of

the system components failures or the instants of
whole system renewal. The random process
{X(t):t >0} defined by equation

X(0)=0, X (t) =Y (z,) fort e[z, 7..,)

is the semi-Markov process.

To have semi-Markov process as a model we must
define its initial distribution and all elements of its
kernel

0 0 Qp(t)
Q(t)= QlO(t) Qll(t) 0
Q) Qu(t) O
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For t > 0 we obtain

Qu:()=Pm<t)=H(1),
Quo(t) =P(g<t, ¥ > )

+PWU =0,¢c<t,y<()
= [[L- G()]dF(x) + (1 - a)[; G(x)dF(x)

=F(t) - aly G(x)dF(x) ,
Qut)=PU =L ¢<t, y <{)=a;G(x)dF(x),
Q) =PWU =0,g<t)=1-a)F(t),

Q,,(t)=PU =1, g <t) =aF(t).

We assume that, the initial state is 2. It means that an
initial distribution is

p@=[0 0 1].
Hence, the semi-Markov model is constructed.

5.3. The reliability characteristics

The random variable ©®,,, that denotes the first

passage time from the state i to the states subset A,
for i=2 and A={0} in our model, represents the

time to failure of the system. The function
R(t) =P(©,, >t) =1-D,,(t), t=0 (27)
is the reliability function of the considered cold
standby system with repair.
System of linear equation (23) for the Laplace-
Stieltjes transforms of the functions
D, (1), t>0,i=12,

in this case is
;10 (8) =0y (8) + 510 (8)0y4(s)
520 (8) =0y (S)+ 510 (8)0.(8)

The solution is

A G1o(9)
1o®) 1-Gyy(5)
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021(8)0y0(S)

P0(S) = Uy (S) + 1-G,,(5) -

(28)

Hence, we obtain the Laplace transform of the
reliability function

~ 1= gy(s
R(s):%(). (29)
The transition probabilities matrix of the embedded
Markov chain in the semi-Markov process
{X(@):t>0} is
0 o0 1
P=|po Py O (30)
Py Py O
Where
Pio =1-Pis

Py, =PU =1,y <{) =af; G(x)dF(X) ,

Py =1-a, p,;=PU=1)=a

Using formula (9) we obtain the CDF of the waiting
timesof T,,i=071.2.

Go(t)=H(), G, (t)=F(), G,(t)=F().
Hence

E(To) =E(n), E(T)) =E(s), E(T3)=E(5).

The equation (25) in this case has form

{1_ P11 0}{E(®10)} _ {E(g)}
—a 1] E(®,)] [E(s)

The solution is

E(®1o) = 1E(g) )

— M

E(O20) = E@)+ 205 @

— M

We will apply theorem 1 to calculate the limit
probability distribution of the state. Now, the system
of linear equation (20) is

7y Pro + 75 P2 = 7o,
7 P12 + 705 Pay =714,
Ty =7y,

Ty +m +my, =1

Since, the stationary distribution of the embedded
Markov chain is

7y = P11 ,
2p;; + Poy

7, = P21 ,
2p;;+ Py

7T, = P11 '
2P+ Py

Using formula (19) we obtain the limit distribution of
semi-Markov process

P, = P, E(17) (32)
P11 E(7) + P21 E(S) + prE(S)
_ P21E(S)
' P1E(7) + P21E(S) + P11 E(S)
P, P1E(s)

B P11 E®) + P21 E(S) + priE(S)

5.4. Conclusion

The expectation E(®,,) denoting the mean time to
failure is

E(©@,0) = E() + fE(G) |

Lt

where

P11 =ajy G()AF(X) .
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Let us notice, that the cold standby determines

increase the meantime to failure 1+ times.

1-py
The limiting availability coefficient of the system is

P,,E(c) + p1E(S)

A=P, +P, = .
P E@) + P2 E(S) + Py, E(S)

6. Semi-Markov process as the reliability
model of the operation with perturbation

Semi-Markov process as the reliability model of
multi-stage operation was considered by F. Grabski in
[8] and [10]. Many operations consist of some
elementary tasks, which are realized in turn. Duration
of the each task realization is assumed to be positive
random variable. Each elementary operation may be
perturbed or failed. The perturbations increase the
time of operation and the probability of failure as
well.

6.1. Description and assumptions

Suppose, that the operation consists of n stages which
following in turn. We assume that duration of an i-th
stage, (i= 1, ..., n) is a nonnegative random variable
&;i=1---.n with a cumulative probability
distribution

R (t):

p@}gﬂ:iﬁ(mdmizL“”n,

where f;(x) denotes its probability density function
in an extended sense.

Time to failure of the operation on the i-th stage
(component) is the nonnegative random variable 7,,

i =1,---,n with exponential distribution

P <t)=1-e4; i=1...,n.

The operation on each step may be perturbed. We
assume that no more then one event causing
perturbation on each stage of the operation may occur.
Time to event causing of an operation perturbation on
i-th stage is a nonnegative random variable
¢ 1=1,...,n with exponential distribution

P(¢ <t)=1-e"; i=1..,n.

The perturbation degreases the probability of the
operation fail. We suppose that time to failure of the
perturbed operation on the i-th stage is the

nonnegative random variable v;,i=12...,n that
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has the exponential distribution with a parameter
Bi >4

P(v, <t)=1-e™""; i=1,...,n.
We assume that the operation is cyclical.
We assume that random variables
& oomiwvin G, 1=1..,n are mutually independent.

6.2. Semi-Markov model

To construct reliability model of operation, we have to
start from definition of the process states.

Let € i=1,..,n, j=0,1 denotes j-th reliability state
on i-th step of the operation where, j=0 denotes
perturbation and j=1 denotes success

€,,.1 - failure (un-success) of the operation

e,,- an initial state.
For convenience we numerate the states

eil<_)i, |:11,n

g, <> i+n,
€onsy > 2N+1,

Under the above assumptions, stochastic process
describing of the overall operation in reliability
aspect, is a semi-Markov process { X (t): t >0} with
a space of states S=4{1,2,...,.2n,2n+1} and flow
graph shown in Figure 3.

Figure 3. Transition graph for n-stage cyclic operation

To obtain a semi-Markov model we have to define all
nonnegative elements of semi- Markov kernel

Q) =] Q;®):i, jeS]
Qij (t) = P{X(Tm—l) = j, z-n+l_TnSt| X(Tn) :I}

First, we define transition probabilities from the state i
to the state j for time not greater than t for i=/, ...,n-1.



Grabski Franciszek
Applications of semi-Markov processes in reliability

Qualt)=P(& <ty > & 6> &)
= [[[e,e™ Y 2,747 £, (x)dxdy dz

where

D={(x,y,2): x=0,y>0,z>0,
X<t, z>X, X>YV}

Since, we have

t

Q i+1(t) = g

F(X)dx [exe Yy [Ae 7z

i
0

e e (x)dx.

ot—

For i =n+1,...,2n—1 we obtain

Qii+n(t)=P(§i <tm >6i, 6 > &)

ae” AN [L— F (u)]du,i=1,...,n—1.

O —_

For i=1,...,n we get

Qi2n+1(t): Pl <t,m <&ivmi <&)

A, Tl _ F (u)]du,

If on i-th stage a perturbation has happened the
transition probability to next state for time less then or
equal to t is

Quiinin M =P(& =& <tv; > & =G 1S > &)

[[[e;e™ g.e A" £, (x)dxdy dz

[[ ;e £, (x)dxdy

D={(x,y,2): x>0,y>0,z>0,

0<x—-y<t, z>x-Yy, X>V}
E={(x,y): x=0,y=>0, x>y}

To find the triple integral over the region D, we apply
change of coordinates:

Uu=x-Yy, v=y, W=z
Hence

X=U+V, Y=V, Z=W.
This mapping assigns to points from set

A={(u,v,w):0<u<t,v>0,w>u}

the points from plane region D. The Jacobian of this
mapping is

J(u,v,w)=1.
Since, we get

[[oe™ pe™* £, (x)dxdy dz

D

= [[Ja;e™ " ge A" . (U +v)J (u,v, w)dudvdw
A

= Taie’“‘vdvofﬁie’ﬂiwdwi f.(u+v)du
0 u 0

t
= [e”Adu [a;e” " f; (u+V)dv.
0 0

Let us notice that

”aieiaiy f; (x)dxdy = Taieiaiyf f; (x)dx
E 0 y
=°§aie‘“”[1— F. (y)ldy

=1—Taie‘“”Fi (y)dy.
0

Finally, we obtain
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t © - .
[e A [[aye " £, (u+v)dvldu 6.3. Two-stage cyclical operation
Qi s () =F—— . We will investigate particular case of that model,
[ae ™V [1-F (y)ldy assuming n=2. A transition matrix for the semi-
0

Markov model of the 2-stage cyclic operation in
reliability aspect takes the following form

In the same way we get

0 Qu) Qut) 0 Q)]

Quiiona®) =P <tv; <& =& 1&>¢) Q, @) 0 0 Qut) Qi)

—aiy o a—fiz Q=] 0 0 0 Qas(t) Qas(t) |,
_Igaie Y e " 1 (x) dxdy dz 0.) O 0 0 Qu()
C flee i (0dxdy 0 0 0 0 Q)]

E

where
i=1..n
_t (1 +aq)u
where le(t)_ge redR (u),

D={(x,y,z): x>0,y>0, ¢

Qus(t)=[ oo™V [1 - F, (u)Idu,
0

0<z<t, z<x-Yy, X>V}

E={(x,y): x=0,y=0, x>y} le(t): gﬂqeiuliml)u [1-F (u)]du,

Hence U (e
QZl(t):.[e ‘2 Z)Usz(u)a

0

0

yi2 }e’ﬂiwdwofaie’“‘vdvj f.(u+v)du
Qn+i 2n+l(t) = ° © = ] °
gaie_aly[l_ F (y)ldy

Qua(t)=J e 2 21— F, (u)Jdu,
0

i=1...,n.

t
Qas(t)=] 2,722 [L- F, ()]du,
Similar way we obtain 0

Quu®) =P <t71, > & & > &) Je [ e f, (u +v)dvldu
Q34(t) =2 :

©

—aiY[M _
g-Untan)i§ (1)du Jane ™= F (n)ldy

O —_—

Qan(t)z P(é:n _é/n <tv, >§n _é/n |§n >§n)

0

t ©
Bile Mdw] ae ™ dv| f, (U + v)du
0

o Qs5(t) =— = .

t v o
ge‘ﬂ”“du gane‘“' f (u+v)dv [ o6 [1- F, (x)]dx
0

[, ™1 F, (x)] dx t )
° [e P2 dufa,e ™ f,(u +v) Jdv

_0 0
Therefore the semi-Markov reliability model of Qu()="— o '
operation has been constructed. ({ o, " [1-F, (x)]dx
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t 0 ®©
Bole7 7" dw] a,e 2" dv| f, (u +v)du

Q45(t): : - - : ,
[a,e " [1-F, (x)]dx
0

Q55 (t) =U (t)

That model allows us to obtain some reliability
characteristics of the operation. The random

variable ®,, denoting the first passage time from state

1 to state 5 in our model, means time to failure of the
operation. The Laplace-Stieltjes transform for the
cumulative distribution function of that random
variable we will obtain from a matrix equation (25).

In this case we have A'={1,2,3,4}, A={5} and

_515(5) 035(S)
~ _ ¢25(5) B(s) = 025(S)
Palf)= ¢35(S) ©) 035 (S) ’
_¢45(5) 045(S)
0 012(s) 03(s) 0
~ | G2(5) 0 0 Guls)
WO 0 0 g
_541(5) 0 0 0

From the solution of equation (24) we obtain Laplace-
Stieltjes transform of the cumulative distribution

function of the random variable ®,, denoting time to
failure of the operation

_a(s) 33
b5() 5(s) (33)

a(s) = Gys(S) + 035 (5) 05 () + Gy5(S)0s5(S)
+ 012 ()24 (S) 045 (S) + 0y5(S) 034 (S)Tys5(S)
6(5) =1—0y,(5)021(S) — G2 (5)T24(S) 044 (S)

~ G13(8) 034 (S)F a1 (S)-

The Laplace transform of the reliability function is
given by the formula
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FS(S) _ 1_¢;5(5) .

6.4. Examples

Example 1
We suppose that

F (t)=1-e™" t>0,i=12.
Then

le( ) K3 [l_e(llﬂzl +K1)tj,

M to+K

Qla( ) al (1_e(11+a1 +K1)tj’

M to+K

le( ) —j,l (1— e 1" +’q)tj,

L +a+K

Qa (t )——K (:I-_e_(/lﬁaer’Q)t ),
A, +a, +x,

Q24( ) — a, (l— e—(ﬂgﬂzgﬂcg)t)

A +a, + K,

A,
1) = 1_e—(/12+a2+1c2)t ,
Qes (1) = A, +a2+1<2( )

Qalt)=

/31+K1 fi—e-tr0),

Q35(t) = Ay (l_ g (aralt )v

btk

Q. (t)= (1_e_(ﬁ2+1€2)t)’

P+ K,

ﬂ —(B2+Kx2)t
Qus()= ;72 —e )

Laplace-Stieltjes transform of these functions are:

K

o)
%2(5) S+ A4 +o, +k;

(34)
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)= =
qlS() S+ A4 +a +K
ﬁls(S)=—A ,
S+ A, +o, +k;
~ K,
S)= ,
921(5) S+ 4, +a, +k,
s) = ,
024(5) S+ 4, +a, +k,
- A,
S) = .
Qa5 (5) S+ 4, +a, +k,
~ K
§)=—-
034(S) S+ f 1
~ A
§)=—-"——=
O35 (S) St f 1
~ Ky
§)=——=—,
041 (S) st 5, 1K,
~ b
§)=——""=—
45(8) st 5, 1K,
For x, =01; x,=012; 4 =0,002; A4,=0,001;
a, =0,02; a,=004; p =001; B =001,
applying (33) and (34), with help of

MATHEMATICA computer program, we obtain the
density function and the reliability function as inverse
Laplace transforms .

The density function is given by the formula

#i5(1)

=0.0071220%%**%*" —0.00872613F %%

—0.000144434 %79 1 0,00374856¢ 000308908

This function is shown in Figure 4.
The reliability function is
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R(t) =3.79823x107*° + 0.0333808e 133"
—0.0484641e%1%°%°% —0.0011472¢ 47

+ 1'01623670.00368869

0.003
0.0025
0.002
0.0015
0.001

0.0005

200 400 600 800

Figure 4. The density function the time to failure of
2-stage cyclic operation

This function is shown on Figure 5.

1
0.8
0.6
0.4

0.2

Figure 5. The reliability function of 2-stage cyclic
operation

Mean time to failure we can find solving the matrix
equation

(I - PA‘)@A‘ :-FA' (35)
where
0 pyp P O
p P,y O 0 py
A= )
0 0 0 p,
Py O 0 0
E(T) E(O;5)
T B 5 E@w)]
E(Ts) E(O3)
E(T,) E(®45)

From this equation we obtain the mean time to failure

E(®,;) = 275378
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Example 2 a,e "2 (-t
Now we assume that G —a)ie ) et o<t<L,
Qut)=4 72 "27%
O dla (< Li - 41 0(26 agly (1_e_(ﬁ2—a2)|_2 ), t> L2
Fi 0= 1 dla t>L ' 1=12. (B, —a,)(1-e722)
1
It means that the duration of the_ stages are determined %a L {(1_8 ). s (1-e<ﬁ2“2)')}, o<icl,
and they are equal &, =L, for i=1,2. Quslt)= (1-e7272) (B, - a;)
—apl.
In this case the elements of Q(t) are: a]-azlq){(l—e'ﬁZLl)_(Iﬂgzezz)(l—e_(ﬂzwz)l‘l)} t>1,
- 2 =0
0 for t<L, . )
Q,(t)= The Laplace’a-Stieltjes transform of these functions
e WU for tsL, are:

alz (S) — e—(ﬂ.l+a1+s) L

%(1—(”““1”} for t<L,
+ta i
%ult)- % 1 ~(A+ay) b Gia(8) = - _ 4 A
ml—e ! J for t>L s S+l +a  S+A4+a
. _ ﬂr_]_ ﬂle—(ll+al+s)L1
A 1o et for t< L, Gus(S) =
0ult)= M+ay S+A4+a, S+ +ta
15 -
M (4 ety
ﬂ,l +a, L-e for t> Li 521(3) =e7(12+a2+S)L2 )
(t)— 0 for t<L, a (s) = o, _ 2e*(inrazers)Lz
Q=1 -vearte or ¢ L, 2 s+A,+a, S+A+a,
—(A2+ap+s)Ly.
g ~ A A, 1
% (1—e Vot Z)tj for t<L, Up5(S) = . -2
0 (t) A, +a2 S+ 4, +a, S+ 4, +a,
: —e 2 for gL
7 +(Z2 2 ; (5)— ale—all—l (1_6(1310!1%)&
34 -l
—e 1| s+ 8 -o
(12+a2)t
( J for t=<L, el galig (Aol
Q (t)— ~ B [1-e e 1(l-e )
e o V2ra) 2 q35(s)=1—e’“1L1 S+ /3 - S+, -«
/1 1- 2 for t>L, 1 1
2 T,
oo (1_ g (Pa-az+s)ly
ale‘aﬂ-l q4l(s)_ : —asly (
—_f-e®) . os<t<L, -e S+, —a,
Q. )= (B —a)(l-e™")
e s Q_e’(ﬂl’aﬁ) L1) t>L 1 —(fo+s)Ly -ajly 1 —(B —az+s)Ly
(B-a)i-e ™) | O
1-e722|  s+p, s+p4,-a,

1 {(1_6@) pe ( (- )} 0<t<l The mean time to failure we can find solving the
Q)= (L-¢") (- ) matrix equation (35), where
35\ -a
1 [1_eﬂ1L1J_ ﬂle 1 (1_6—(ﬂ1—a1)L1) t> L1
(1_e—a1L1) (8, -a) ' Py, = g~ (Ara)ly
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L (1 _ e—(/11+f11)L1 )

Pz =

Aht+a

le — e_(/12+a2)|-2

_a, (1_ ef(lzmz)l-z)

P2y =

A, +a,

12 (1 _ e*(;~2+a2)L2]_ )

j’l (1 _ e*()ﬂ*a’l) L1 )

Pis =

.

p =
25 A, +a,
ale—all-l 1— e*(ﬁl*“l)'—l
p34 = —onls
1-e™ % BL—o
_Al
Des = B (1— e
¥l B
el (1 _ e—(ﬂ1—a1)l-1
b—a
aze—asz 1— e—(ﬂz—az)
p41 = —aol
1-e %272 By —a,
P
p45 - 1_ e,asz

At+a

- - —(B —a)L
[1—6 p2L2 _e aglyp (l—e (B —a2) Z)J

B P —a,
Ps; =1
1 ef(a1+/11)L1
E(rl) = -
a +4 a+4
1 g (a2+22)L2
E(T,) = -
o, + 4, a, + 4,
d(G4(5) + 035(5))
E(T3) - _ 34 i 35 |S:O
d(g,,(s) +0,:(s
E(T,) = - (9qa( LS U45(5)) |S:0
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For the same parameters x; =01; x, =012;
4 =0,002; 4, =0,001; o, =0,02; o, =0,04;
p=001; g, =001,

and L, = ] i L, = i the mean time to failure of
K1 K

the operation is
E(©,;) = 366.284.

In previous case the mean time to failure is
E(O®,5) = 275,378.

6.5. Conclusion

It means that for the determined duration of the stages
mean time to failure of the operation is essentially
greater than for exponentially distributed duration of
the stages with the same expectations.

To assess reliability of the many stage operation we
can apply a semi-Markov process. Construction of the
semi-Markov model consist in defining a kernel of
that process. A way of building the kernel for the
semi-Markov model of the many stage operation is
presented in this paper. From Semi-Markov model we
can obtain many interesting parameters and
characteristics for analysing reliability of the
operation.

From presented examples we get conclusion that for
the determined duration of the stages, mean time to
failure of the operation is essentially greater than for
exponentially distributed duration of the stages with
the same expectations.

7. Semi-Markov process as a failure rate

The reliability function with semi-Markov failure rate
was considered by Kopocinski & Kopocinska [11],
Kopocinska [12] and by Grabski [4], [6], [9]. Suppose
that the failure rate {A(t):t >0} is the semi-Markov

process with the discrete state space S={4;:jeJ},

J={01,...m} or J={012,..}, 0<A, <A <...
with the kernel

Q) =[Q; (®):i, jeJ]

and the initial distribution p=[p, :i € J].
We define a conditional reliability function as

Ri(t)zE{exp{—}k(u)du}ﬁ(O):ii}, £20, il



Grabski Franciszek
Applications of semi-Markov processes in reliability

In [6] it is proved, that for the regular semi-Markov
process {A(t):t>0} the conditional reliability

functions R;(t) ,t>0, ieJ defined by (17), satisfy
the system of equations

R(t)=e "' [1-G(t)]+ X }e"*Rt X)dQ;(x),i €

io

Applying the Laplace transformation we obtain the
system of linear equations

Ri(s)=s+—%—é(s+4)+;®(s)@,—(s+@ieJ,

where

R (s) = [e 'R, (O)dt, G, (s) = [e*'G, (t)dt,
0 0

q;(s) = Ie_Stinj ®.
0
In matrix notation we have

[1-G,()IR(s) = H(s),

where
[1-d,(5)]
1-Goo(s+49) —Goi(S+4g)  —ToalS+4g)
| G A) LG A) -Gl A)
—Op(S+4y)  —0u(s+4,) 1-0p(s+4,) -
R, (s) ) ~Gy(s+4y)
= _| Ri(s) 5
R(s)=| ! w -Gi(s+4)
) R, (s) H(s)=| s+ 4, i
: s 2 -G;(s+4,)
2 .

The conditional mean times to failure we obtain from
the formula

W = I|m R(p) pe(0,), ied

p—>

(21)

The unconditional mean time to failure has a form
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1= 2P0 = 4) th.

7.1. Alternating random process as a failure
rate

Assume that the failure rate is a semi-Markov process
with the state space S ={4,, 4,} and the kernel

[0 G
Q(t)—{Gl(t) A }

where Gy (t), G,(t), are the cumulative probability

distribution functions with nonnegative support.
Suppose that at least one of the functions is absolutely
continuous with respect to the Lebesgue measure. Let

p=[p,, P,] be an initial probability distribution of

the process. That stochastic process is called the
alternating random process. In that case the matrices
from the equation (20) are

_§0(5+ﬂ“0) ,

0-600= 5y

where

G0 (S) = Goa(5) = Ie-“deo (1),

§,(5) = Gy (5) = Ie“del(t) ,
= [Ry(s)

R

(5)- {R()}

H(s) = {

The solution of (20) takes the form

-G o(S+4g)
e (s+/11)

Ry(S)

sMi)

S+ﬂo)+go(5+ﬂo le
1-0p(s+4)Gy(s+4)

_ S+io
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R.(s)

L _él(s+ﬂ“1)+gl(s+ll)i_éo(s+/10)

s+A0 S+A0

B 1-Go(s+240) (5 +41)

The Laplace transform of the unconditional reliability
function is

R(S) = PoRy (S) + PR, (S).

Example 3.
Assume that

Gy (1) =igo(x>dx, G, (1) =igl(x)dx,
where

B° 1
0 Xao— e—ﬁo X

, X=0,
1—‘(ao)

9o(X) =

a
g,(t) = A x1te AX x>0.
[(a,)

Suppose that an initial state is A,. Hence the initial
distribution is p(0)=[L 0] and the Laplace
transform of the unconditional reliability function
is ﬁ(s) = F~€O (s). Now the equation (20) takes the
form of

_ a . )
) P |[Ry®)
(S+ﬂ0 +/’Lo)a
a
1 ~
B Ay _ 1 Ry (s)
L (S+ﬂl+/11) 1 |

1 Bi°
_[StAo (s+Ag)(s+ By +4)7

1 Bt
_5"‘11 (S+A4)(s+ fy+ A" i

For
ay=2,a,=3,6,=02,4 =05,4,=04 =02,

we have
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1004 004 [ 1 0125
§(s)_s s(s+02)%  (5+0.2)%[s+0.2 (s+02)(s+0.7)°
o 004  0.25

(5+0.2) (5+0.7)°

Using the MATHEMATICA computer program we
obtain the reliability function as the inverse Laplace
transform.

R(t) =1.33023exp(-0.0614293)

+exp(-0.021t)(1.34007-10™* +9.9198-107"t)

— 2exp(-0.843935)[0.018945%0s(0.17178%t)

+0.00695828in(0.171789t)]

— 2exp(-0.37535t)[0.146168c05(0.224699t)

+0.128174sin(0.224699t)]

Figure 6 shows the reliability function.

Figure 6. The reliability function from example 2
The corresponding density function
f(t)=—-R'(t)

is shown in Figure 7

20 a0 AN £l 1

Figure 7. The density function from example 2
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8. Conclusion [12] Korolyuk, V. S. & Turbin, AF. Semi-Markov
The semi-Markov processes theory is convenient for pKricéi:/esses end their applications, Naukova Dumka,

description of the reliability systems evolution [13] Limni . ;
. A . 0s, N. & Oprisan, G. (2001). Semi-Markov
through the time. The probabilistic characteristics of Processes and Reliability. Boston, Birkhauser.

semi-Markov processes are interpreted as the
reliability coefficients of the systems. If A represents
the subset of failing states and i is an initial state, the

random variable ®,, designating the first passage

time from the state i to the states subset A, denotes
the time to failure of the system. Theorems of semi-
Markov processes theory allows us to find the
reliability characteristic, like the distribution of the
time to failure, the reliability function, the mean time
to failure, the availability coefficient of the system
and many others. We should remember that semi-
Markov process might be applied as a model of the
real system reliability evolution, only if the basic
properties of the semi-Markov process definition are
satisfied by the real system.
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