
JAISCR, 2021, Vol. 11, No. 4, pp. 287

A NOVEL FAST FEEDFORWARD NEURAL
NETWORKS TRAINING ALGORITHM

Jarosław Bilski1,∗, Bartosz Kowalczyk1, Andrzej Marjański2,3,
Michał Gandor4, Jacek Zurada5

1Department of Intelligent Computer Systems, Częstochowa University of Technology,
al. Armii Krajowej 36, 42-200 Częstochowa, Poland

2Management Department, University of Social Sciences, 90-113 Łódź, Poland
3Clark University, Worcester, MA 01610, USA

4Faculty of Computer Science and Telecommunications, Cracow University of Technology
Warszawska 24, 31-155 Krakow, Poland

5Department of Computer and Electrical Engineering, University of Louisville, KY 40292, USA
∗E-mail: jaroslaw.bilski@pcz.pl

Submitted: 15th February 2021; Accepted: 24th July 2021

Abstract

In this paper1 a new neural networks training algorithm is presented. The algo-
rithm originates from the Recursive Least Squares (RLS) method commonly used
in adaptive filtering. It uses the QR decomposition in conjunction with the Givens
rotations for solving a normal equation - resulting from minimization of the loss
function. An important parameter in neural networks is training time. Many
commonly used algorithms require a big number of iterations in order to achieve
a satisfactory outcome while other algorithms are effective only for small neural
networks. The proposed solution is characterized by a very short convergence time
compared to the well-known backpropagation method and its variants. The paper
contains a complete mathematical derivation of the proposed algorithm. There are
presented extensive simulation results using various benchmarks including func-
tion approximation, classification, encoder, and parity problems. Obtained results
show the advantages of the featured algorithm which outperforms commonly used
recent state-of-the-art neural networks training algorithms, including the Adam
optimizer and the Nesterov’s accelerated gradient.
Keywords: neural network training algorithm, QR decomposition, Givens rota-
tions, approximation, classification.

1 Introduction
Artificial neural networks (ANNs) are one of

the most common elements in the artificial in-

telligence. They are mathematical models of bi-
ological neurons. Their main properties include
learning based on provided samples and gener-

1This work has been supported by the Polish National Science Center under Grant 2017/27/B/ST6/02852 and the
program of the Polish Minister of Science and Higher Education under the name ”Regional Initiative of Excellence”
in the years 2019 - 2022 project number 020/RID/2018/19, the amount of financing PLN 12,000,000.00.

10.2478/jaiscr-2021-0017
 – 306Robert Cierniak, Piotr Pluta, Marek Waligóra, Zdzisław Szymański, Konrad Grzanek, Filip Pałka, Vincenzo Piuri

288 Jarosław Bilski, Bartosz Kowalczyk, Andrzej Marjański, MichałGandor, Jacek Zurada

alizing real-life problems without knowing an
exact formula. In recent years neural networks
have been the subject of many research projects
e.g. [1–7] and are used in the industry [8–10],
medicine [11–13], finance sector [14–16], and
many others [17–19].

When the ANN is to be used best to its
advantage, it needs to be trained for a spe-
cific task. To achieve that, the training algo-
rithm and a sufficient training set should be ap-
plied. Unfortunately, not every algorithm fits
well each network and each training set. The
objective of the ANN learning process is to find
the global minimum of the error function. One
of the biggest challenges in training algorithms
is to avoid oscillations around the local min-
ima while maintaining a reasonable convergence
speed. This can be achieved by applying pa-
rameters to the training process. Most algo-
rithms introduce at least one parameter - the
learning rate (η) usually chosen experimentally
from the range (0,1]. It provides information
on how big weight correction in a single step
can be.

The backpropagation algorithm (BP) de-
rived by J. Werbos in 1974 [1] completely rev-
olutionized the world of artificial intelligence.
The BP algorithm for the first time provided
a good method for calculating errors and ex-
pected values for neurons in hidden layers. The
BP algorithm is still one of the most popu-
lar training methods for artificial neural net-
works [20–22]. The basic idea is to calculate
a gradient for each weight, scale it by learn-
ing rate (η) and apply it as a correction to its
respective weight during each iteration. Un-
fortunately, the pure BP variant is burdened
with many inconveniences. The BP algorithm
is likely to becoming stuck in the local min-
ima or overstepping the solution as the learning
rate is mismatched. Due to that the BP algo-
rithm requires many more epochs in order to
converge below the given error threshold. De-
spite the aforementioned disadvantages the BP
algorithm is commonly used for learning and
acts as an indicator in most benchmarks.

Over the years many researchers have de-
veloped a lot of improvements for the BP al-
gorithm. Since the BP method uses only first

order derivatives, it is assumed to be the first
order training algorithm. Some of the BP im-
provements were realised simply by applying
additional parameters to the BP, which also
makes them first order methods. Such approach
is used, for example, in momentum variants of
the BP. Other improvements introduce second
order derivatives. This makes them closer to
the Newton’s method. Such methods are called
second order training algorithms. There are
also learning methods that only approximate
second order derivatives. Such approach was
introduced in the Levenberg-Marquardt algo-
rithm [23].

To overcome the problem of the slow train-
ing progress, the momentum variant of the BP
algorithm (MBP) was introduced. The main
idea was formulated by Polyak in [24] and it
applies the second predefined training factor,
so-called momentum (α). This parameter is se-
lected experimentally for each specific case but
usually takes the value of 0.9. The momentum
factor brings a degree of inertia to the training
process which makes it less vulnerable to large
gradient changes. It speeds up the training on
the ’flat spots’ of the error function by accumu-
lating small gradient changes. It also helps to
avoid local minima by maintaining the momen-
tum from previous iterations. This suppresses
sudden direction changes of the training process
minimizing the risk of oscillation in a narrow
ravine of the error function. Similar to the clas-
sic Back Propagation algorithm, the MBP uses
predefined and training-time fixed values of its
parameters (η and α). This makes the Momen-
tum Back Propagation algorithm not flexible
enough and puts it in need of further improve-
ments.

One of the well known improvements made
to the MBP algorithm is a Nesterov’s Accel-
erated Gradient (NAG). The method was ini-
tially derived by Nesterov in 1983 [25] and was
the subject of many research projects [26]. The
NAG algorithm is classified as a first order
method which requires only the local parame-
ters of a neuron in order to calculate the weight
update. Similar to the classical momentum, the
NAG uses step (η) and momentum (α) as the
training parameters. The novelty here is an in-

289Jarosław Bilski, Bartosz Kowalczyk, Andrzej Marjański, MichałGandor, Jacek Zurada

alizing real-life problems without knowing an
exact formula. In recent years neural networks
have been the subject of many research projects
e.g. [1–7] and are used in the industry [8–10],
medicine [11–13], finance sector [14–16], and
many others [17–19].

When the ANN is to be used best to its
advantage, it needs to be trained for a spe-
cific task. To achieve that, the training algo-
rithm and a sufficient training set should be ap-
plied. Unfortunately, not every algorithm fits
well each network and each training set. The
objective of the ANN learning process is to find
the global minimum of the error function. One
of the biggest challenges in training algorithms
is to avoid oscillations around the local min-
ima while maintaining a reasonable convergence
speed. This can be achieved by applying pa-
rameters to the training process. Most algo-
rithms introduce at least one parameter - the
learning rate (η) usually chosen experimentally
from the range (0,1]. It provides information
on how big weight correction in a single step
can be.

The backpropagation algorithm (BP) de-
rived by J. Werbos in 1974 [1] completely rev-
olutionized the world of artificial intelligence.
The BP algorithm for the first time provided
a good method for calculating errors and ex-
pected values for neurons in hidden layers. The
BP algorithm is still one of the most popu-
lar training methods for artificial neural net-
works [20–22]. The basic idea is to calculate
a gradient for each weight, scale it by learn-
ing rate (η) and apply it as a correction to its
respective weight during each iteration. Un-
fortunately, the pure BP variant is burdened
with many inconveniences. The BP algorithm
is likely to becoming stuck in the local min-
ima or overstepping the solution as the learning
rate is mismatched. Due to that the BP algo-
rithm requires many more epochs in order to
converge below the given error threshold. De-
spite the aforementioned disadvantages the BP
algorithm is commonly used for learning and
acts as an indicator in most benchmarks.

Over the years many researchers have de-
veloped a lot of improvements for the BP al-
gorithm. Since the BP method uses only first

order derivatives, it is assumed to be the first
order training algorithm. Some of the BP im-
provements were realised simply by applying
additional parameters to the BP, which also
makes them first order methods. Such approach
is used, for example, in momentum variants of
the BP. Other improvements introduce second
order derivatives. This makes them closer to
the Newton’s method. Such methods are called
second order training algorithms. There are
also learning methods that only approximate
second order derivatives. Such approach was
introduced in the Levenberg-Marquardt algo-
rithm [23].

To overcome the problem of the slow train-
ing progress, the momentum variant of the BP
algorithm (MBP) was introduced. The main
idea was formulated by Polyak in [24] and it
applies the second predefined training factor,
so-called momentum (α). This parameter is se-
lected experimentally for each specific case but
usually takes the value of 0.9. The momentum
factor brings a degree of inertia to the training
process which makes it less vulnerable to large
gradient changes. It speeds up the training on
the ’flat spots’ of the error function by accumu-
lating small gradient changes. It also helps to
avoid local minima by maintaining the momen-
tum from previous iterations. This suppresses
sudden direction changes of the training process
minimizing the risk of oscillation in a narrow
ravine of the error function. Similar to the clas-
sic Back Propagation algorithm, the MBP uses
predefined and training-time fixed values of its
parameters (η and α). This makes the Momen-
tum Back Propagation algorithm not flexible
enough and puts it in need of further improve-
ments.

One of the well known improvements made
to the MBP algorithm is a Nesterov’s Accel-
erated Gradient (NAG). The method was ini-
tially derived by Nesterov in 1983 [25] and was
the subject of many research projects [26]. The
NAG algorithm is classified as a first order
method which requires only the local parame-
ters of a neuron in order to calculate the weight
update. Similar to the classical momentum, the
NAG uses step (η) and momentum (α) as the
training parameters. The novelty here is an in-

A NOVEL FAST FEEDFORWARD NEURAL NETWORKS . . .

termediate step in order to access the gradient’s
direction and then apply the weight correction
based on that information. This approach helps
to mitigate inaccurate training steps and boost
convergence for valid directions.

In order to achieve even better results, the
intuition suggests the need to use variable val-
ues of learning factors during training. Such
idea was used in the Quickprop (QProp) algo-
rithm published by S. E. Fahlman in 1988 [27].
The QProp is inspired by the Newton’s method,
which makes it a second order training algo-
rithm. In order to calculate the weight update,
the QProp approximates the total loss function
with a quadratic polynomial function. While
many researchers report high performance of
the QProp algorithm, it is still burdened with
several drawbacks. The method is highly sen-
sitive to initial weights values, which can result
in a lack of convergence. Also, training done
by the QProp algorithm can prove unstable in
a case where the error function contains many
local minima.

Most BP-based algorithms use an error
function gradient value to determine the weight
correction. An example of the exception from
this rule is the Resilient Propagation (RProp)
algorithm developed by M. Riedmiller and H.
Braun in 1993 [28]. The RProp is a self
tuned algorithm based on the steepest descent
method. The only training factors here are the
gain on the ’positive’ and the ’negative’ sce-
nario. The weight update happens once per
epoch and uses only local information stored
in each neuron. The RProp algorithm is based
on the idea that the magnitude of the gradi-
ent can occasionally be a poor factor in defin-
ing the next training step. This can happen in
the case when the activation function becomes
saturated. Then, the resulting gradient value
is very small. To overcome this drawback the
RProp algorithm uses only a sign of the gradi-
ent and reacts accordingly to its change through
the training.

While neural networks gain popularity, the
stochastic gradient descent based algorithms
become in the center of interest. In 2014 D.
P. Kingma and J. Ba proposed a very flexi-
ble method for stochastic optimization called

Adam [29]. The algorithm is easy in implemen-
tation, has low memory requirements, and is
proven to be very flexible. It utilizes several
training parameters which in most applications
retain fixed values. The Adam is a first order
training algorithm that is derived from the SGD
methods and is based on the adaptive estimates
of the training momentum.

Over the couple of decades many algorithms
were competing with the classic BP method us-
ing variable parameters, derivatives of higher
orders, temporal updates, etc. Most of them
proved successful but the training time still re-
mains disappointing for various applications.
The literature is missing a well performing,
flexible and affordable in its implementation
method for neural networks training. For that
reason we made an attempt to establish a train-
ing method which is not burdened with the
aforementioned shortcomings of the well known
algorithms. The ultimate goal of our method is
to reduce the number of epochs and the training
time that are required for a valid neural network
training.

The proposed algorithm originates from the
Recursive Least Squares (RLS) method [30]. In
adaptive filters, the RLS algorithm is used for
adjusting filter weights. The main goal of the
adaptive methods is to minimize a given error
measure. Due to the similarity of an adaptive
filter and a single neuron, similar algorithms
(with some modifications) can be applied to
neural networks as they are to the adaptive
filters. The core of the proposed algorithm is
based on the QR decomposition achieved by
the Givens rotations (Givens rotations in QR
decomposition - GQR), whose implementation
is not highly complex and maintains high scala-
bility. As presented in the following Sections, in
the GQR algorithm each neuron is trained sep-
arately from the others, which opens the possi-
bility for parallel training of all neurons in the
network.

The summary of the article novelty and
originality formulates as follows:

1. A new, original feedforward (FF) neural net-
works training algorithm has been proposed.
It utilizes the Givens rotations to perform

290 Jarosław Bilski, Bartosz Kowalczyk, Andrzej Marjański, MichałGandor, Jacek Zurada

the QR decomposition and the neural net-
work weights updates.

2. A comparison of the GQR algorithm to a few
well known, popular training algorithms has
been presented.

3. Extensive research has been conducted using
three types of FF neural networks for eight
different test examples.

4. All tested examples achieved a significant de-
crease in the number of epochs, for example,
for the two spirals problem, the GQR algo-
rithm needs 25.48 epochs on average, while
the Adam algorithm needs 552.65 epochs.

5. Moreover, in all the tested cases the training
time is shorter, for example, for the HANG
2D function, the GQR algorithm needs 12.18
milliseconds on average, while the MBP al-
gorithm needs 43.22 epochs.

6. The great advantage of the proposed algo-
rithm is that it can be easily parallelized to
achieve much better results. Two types of
parallelization are possible: parallel calcula-
tions for all neurons in the neural network
and parallel calculations of the Givens rota-
tions.

The structure of the article is divided into
several parts. Section 3 contains a description
of the Givens rotation basics. Then, in Sec-
tion 4, the rotation-based QR decomposition is
explained. Finally, in Section 5, a full math-
ematical derivation of weight update is pre-
sented. Section 6 contains a detailed descrip-
tion of the performed simulations. The ob-
tained results are presented as a performance
comparison of respective training algorithms.
The last Section gives the conclusions, final re-
marks and ideas for future work.

2 The selected feedforward
neural networks overview

There are many types of artificial neural
networks. Ones of very useful ANNs are feed
forward (FF) networks. They can be success-
fully applied in many demanding tasks. FF net-

works can consist of multiple layers, with a var-
ious number of neurons in each one. The last
layer is called the output layer. All layers be-
fore it are the hidden layers. The Network’s
input is an input to the first layer while the net-
work’s output is the output from the last layer.
Such network, with at least one hidden layer is
called a multilayer perceptron (MLP). An ex-
ample structure of an MLP is shown in Figure 1.
A special case of the MLP networks are the fully
connected MLP networks (FCMLP). Their lay-
ers are connected with all previous layers and
the network’s input. An example of a simple
FCMLP network is shown in Figure 2. Another
variant of FF networks are the fully connected
cascade (FCC) networks. They consist of or-
dered neurons. Each neuron in an FCC network
is connected with all the preceding neurons and
the network’s input creates the so-called ”cas-
cade”. An example structure of an FCC net-
work is shown in Figure 3.

Figure 1. Example MLP network.

Figure 2. Example FCMLP network.
’Additional’ connections are marked with the

dotted line.

+1 +1

+1 +1

+1

+1 +1

+1 +1

+1+1

+1

291Jarosław Bilski, Bartosz Kowalczyk, Andrzej Marjański, MichałGandor, Jacek Zurada

the QR decomposition and the neural net-
work weights updates.

2. A comparison of the GQR algorithm to a few
well known, popular training algorithms has
been presented.

3. Extensive research has been conducted using
three types of FF neural networks for eight
different test examples.

4. All tested examples achieved a significant de-
crease in the number of epochs, for example,
for the two spirals problem, the GQR algo-
rithm needs 25.48 epochs on average, while
the Adam algorithm needs 552.65 epochs.

5. Moreover, in all the tested cases the training
time is shorter, for example, for the HANG
2D function, the GQR algorithm needs 12.18
milliseconds on average, while the MBP al-
gorithm needs 43.22 epochs.

6. The great advantage of the proposed algo-
rithm is that it can be easily parallelized to
achieve much better results. Two types of
parallelization are possible: parallel calcula-
tions for all neurons in the neural network
and parallel calculations of the Givens rota-
tions.

The structure of the article is divided into
several parts. Section 3 contains a description
of the Givens rotation basics. Then, in Sec-
tion 4, the rotation-based QR decomposition is
explained. Finally, in Section 5, a full math-
ematical derivation of weight update is pre-
sented. Section 6 contains a detailed descrip-
tion of the performed simulations. The ob-
tained results are presented as a performance
comparison of respective training algorithms.
The last Section gives the conclusions, final re-
marks and ideas for future work.

2 The selected feedforward
neural networks overview

There are many types of artificial neural
networks. Ones of very useful ANNs are feed
forward (FF) networks. They can be success-
fully applied in many demanding tasks. FF net-

works can consist of multiple layers, with a var-
ious number of neurons in each one. The last
layer is called the output layer. All layers be-
fore it are the hidden layers. The Network’s
input is an input to the first layer while the net-
work’s output is the output from the last layer.
Such network, with at least one hidden layer is
called a multilayer perceptron (MLP). An ex-
ample structure of an MLP is shown in Figure 1.
A special case of the MLP networks are the fully
connected MLP networks (FCMLP). Their lay-
ers are connected with all previous layers and
the network’s input. An example of a simple
FCMLP network is shown in Figure 2. Another
variant of FF networks are the fully connected
cascade (FCC) networks. They consist of or-
dered neurons. Each neuron in an FCC network
is connected with all the preceding neurons and
the network’s input creates the so-called ”cas-
cade”. An example structure of an FCC net-
work is shown in Figure 3.

Figure 1. Example MLP network.

Figure 2. Example FCMLP network.
’Additional’ connections are marked with the

dotted line.

A NOVEL FAST FEEDFORWARD NEURAL NETWORKS . . .

Figure 3. Example FCC network.

The NN recall phase is defined by formulas

s
(l)
i =

Nl−1∑
j=0

w
(l)
ij x

(l)
j ,

y
(l)
i (t) = f(s(l)

i (t)),
(1)

where w
(l)
ij is j-th weight of i-th neuron in l-th

layer, x
(l)
j is j-th input value in l-th layer, s

(l)
i

is the linear output of i-th neuron in l-th layer,
y

(l)
i is the nonlinear output of i-th neuron in l-

th layer, f is an activation function and Nl is a
number of neuron in l-th layer.

3 The Givens rotation
The Givens rotation [31] is an orthogo-

nal transformation method originated in n-
dimensional linear algebra. In most cases
rotations are limited to a single plain,
which is stretched between two unit vectors:
span{ep,eq}(1 ≤ p < q ≤ n). The rotation itself
is obtained by special matrix Gpq, so called a
rotation matrix or simply a rotation as shown
in the following equation

Gpq =




1 · · · 0
. . .

c · · · s
...

...
...

−s · · · c
. . .

0 · · · 1




p

q

p q
(2)

gpp = gqq = c,
gpq = −gqp = s,

(3)

where
c2 +s2 = 1. (4)

From equation (4) we know that GT
pqGpq = I,

which is the proof that matrix Gpq is in fact an
orthogonal matrix. The rotation is performed
by the following transformation

x → y = Gpqx, (5)

which implies the given equalities

yp = cxp +sxq

yq = −sxp + cxq

yi = xi for(i ̸= p,q; i = 1, . . . ,n).
(6)

Consider a single rotation of vector a ∈ Rn. Ac-
cording to equations (5) and (6) a single ro-
tation affects only two elements of vector a.
Those are ap and aq. This provides an opportu-
nity to set parameters c and s, so that element
aq is to be superseded by the value of 0 as fol-
lows

āq = −sap + caq = 0. (7)

In order to achieve that, parameters c and s of
rotation matrix Gpq are calculated according to

c = ap

ρ
, s = aq

ρ
. (8)

To take care of the numerical stability, ρ is de-
picted as

ρ =




ap

√
1+(aq/ap)2 for |ap| ≥ |aq|

aq

√
1+(ap/aq)2 for |ap| < |aq|

(9)

4 QR decomposition based on
rotations

The QR decomposition [32, 33] is an it-
erative algorithm for transforming any non-
singular matrix A ∈ Rm,n to the product of or-
thogonal matrix Q and upper-triangle matrix
R as follows

A = QR, (10)

where QT Q = I, QT = Q−1 and rij = 0 for
i > j. Let a ∈ Rm be a single column vec-
tor of matrix Am,n. Due to equations (5-9)
it is possible to calculate a sequence of rota-
tions G12,G13, . . . ,G1m which can be given as
a product

G1 = G12 . . .G1,m−1G1m. (11)

+1

+1
+1

+1

292 Jarosław Bilski, Bartosz Kowalczyk, Andrzej Marjański, MichałGandor, Jacek Zurada

Matrix G1 is also a rotation matrix. It is able to
perform multiple rotations of vector a at once,
in order to eliminate m − 1 elements as shown
in the following equation

ā = G1a = e1ρ = [ρ,0, . . . ,0]T ,ρ = ±∥a∥2. (12)

While the elimination of the elements in the
first column is taking place, all columns of ma-
trix

A = A1 = M1 =
[

a1 B1
]

(13)

are affected by each rotation. This is the result
of expanding equation (6) with an additional
dimension as follows

A2 = G1A1 = Ḡ1M1 =
[

ā1 B̄1
]

=

=
[

ρ1
0 B̄1

]
=

[
r11 r12 · · ·r1n

0 M2

]

(14)
At this stage, the first column of matrix A is
eliminated as shown in equation (12). The first
row of matrix A is also rotated as desired. It
will not be affected by the oncoming rotations.
In the next steps new rotations are performed
as shown in the following equation

Gk = Gk,k+1 . . .Gk,m−1Gkm

for(k = 1, . . . ,m−1).
(15)

In each iteration of the algorithm, matrix Mk

is the remaining sub-matrix that still needs to
be rotated due to the following equation

Ak+1 = ḠkMk =
[

āk B̄k

]
=

=
[

ρk

0 B̄k

]
=

[
rkk rk,k+1 · · ·rk,n

0 Mk+1

]
,

(16)
where

Gk =
[

Ik−1 0
0 Ḡk

]
. (17)

After m − 1 steps, upper-triangle matrix R ∈
Rm,n is obtained as a result of consecutive
transformations of matrix A as follows

R = Gm−1 . . .G1A1 =

= Gm−1,m . . .G23 . . .G2mG12 . . .G1mA1 =

= QT A.
(18)

Orthogonal matrix Q is not needed to be ex-
plicitly calculated. During the process only ro-
tation parameters c and s are directly required.
Matrix Q could be obtained by an inversion of
the rotations according to the following equa-
tion

Q = GT
1 . . .GT

m−1 =

= GT
1m . . .GT

12GT
2m . . .GT

23 . . .GT
m−1,m.

(19)

5 Network training
The GQR algorithm can be applied to any

multi-layered artificial neural network along
with any differentiable activation function. The
ultimate goal of a training process is to mini-
mize the error measure which is given by the
following equation

J (n) =
n∑

t=1
λn−t

NL∑
j=1

ε
(L)2
j (t) =

=
n∑

t=1
λn−t

NL∑
j=1

[
d

(L)
j (t)−f

(
x(L)T (t)w(L)

j (n)
)]2

,

(20)
where λ ∈ (0,1⟩ is a forgetting factor. This pa-
rameter defines how much the previous updates
influence the current iteration of the algorithm.

The error minimization is based on the gra-
dient method. In order to obtain an entry point
to the GQR weight update algorithm, the er-
ror measure gradient needs to be calculated and
equalled to 0 as follows

∂ J(n)
∂ w(l)

i (n)
= 2

n∑
t=1

λn−t
NL∑
j=1

∂ ε
(L)
j (t)

∂ w(l)
i (n)

ε
(L)
j (t) =

= −2
n∑

t=1
λn−t

NL∑
j=1

∂ y
(L)
j (t)

∂ w(l)
i (n)

ε
(L)
j (t) = 0.

(21)
In the next step equation (21) is taken into fur-
ther considerations

293Jarosław Bilski, Bartosz Kowalczyk, Andrzej Marjański, MichałGandor, Jacek Zurada

Matrix G1 is also a rotation matrix. It is able to
perform multiple rotations of vector a at once,
in order to eliminate m − 1 elements as shown
in the following equation

ā = G1a = e1ρ = [ρ,0, . . . ,0]T ,ρ = ±∥a∥2. (12)

While the elimination of the elements in the
first column is taking place, all columns of ma-
trix

A = A1 = M1 =
[

a1 B1
]

(13)

are affected by each rotation. This is the result
of expanding equation (6) with an additional
dimension as follows

A2 = G1A1 = Ḡ1M1 =
[

ā1 B̄1
]

=

=
[

ρ1
0 B̄1

]
=

[
r11 r12 · · ·r1n

0 M2

]

(14)
At this stage, the first column of matrix A is
eliminated as shown in equation (12). The first
row of matrix A is also rotated as desired. It
will not be affected by the oncoming rotations.
In the next steps new rotations are performed
as shown in the following equation

Gk = Gk,k+1 . . .Gk,m−1Gkm

for(k = 1, . . . ,m−1).
(15)

In each iteration of the algorithm, matrix Mk

is the remaining sub-matrix that still needs to
be rotated due to the following equation

Ak+1 = ḠkMk =
[

āk B̄k

]
=

=
[

ρk

0 B̄k

]
=

[
rkk rk,k+1 · · ·rk,n

0 Mk+1

]
,

(16)
where

Gk =
[

Ik−1 0
0 Ḡk

]
. (17)

After m − 1 steps, upper-triangle matrix R ∈
Rm,n is obtained as a result of consecutive
transformations of matrix A as follows

R = Gm−1 . . .G1A1 =

= Gm−1,m . . .G23 . . .G2mG12 . . .G1mA1 =

= QT A.
(18)

Orthogonal matrix Q is not needed to be ex-
plicitly calculated. During the process only ro-
tation parameters c and s are directly required.
Matrix Q could be obtained by an inversion of
the rotations according to the following equa-
tion

Q = GT
1 . . .GT

m−1 =

= GT
1m . . .GT

12GT
2m . . .GT

23 . . .GT
m−1,m.

(19)

5 Network training
The GQR algorithm can be applied to any

multi-layered artificial neural network along
with any differentiable activation function. The
ultimate goal of a training process is to mini-
mize the error measure which is given by the
following equation

J (n) =
n∑

t=1
λn−t

NL∑
j=1

ε
(L)2
j (t) =

=
n∑

t=1
λn−t

NL∑
j=1

[
d

(L)
j (t)−f

(
x(L)T (t)w(L)

j (n)
)]2

,

(20)
where λ ∈ (0,1⟩ is a forgetting factor. This pa-
rameter defines how much the previous updates
influence the current iteration of the algorithm.

The error minimization is based on the gra-
dient method. In order to obtain an entry point
to the GQR weight update algorithm, the er-
ror measure gradient needs to be calculated and
equalled to 0 as follows

∂ J(n)
∂ w(l)

i (n)
= 2

n∑
t=1

λn−t
NL∑
j=1

∂ ε
(L)
j (t)

∂ w(l)
i (n)

ε
(L)
j (t) =

= −2
n∑

t=1
λn−t

NL∑
j=1

∂ y
(L)
j (t)

∂ w(l)
i (n)

ε
(L)
j (t) = 0.

(21)
In the next step equation (21) is taken into fur-
ther considerations

A NOVEL FAST FEEDFORWARD NEURAL NETWORKS . . .

n∑
t=1

λn−t
NL∑
j=1

∂ y
(L)
j (t)

∂ s
(L)
j (t)

NL−1∑
p=1

∂ s
(L)
t (t)

∂ y
(L−1)
p (t)

∂ y
(L−1)
p (t)

∂ w(l)
i (n)

ε
(L)
j (t) =

=
n∑

t=1
λn−t

NL−1∑
p=1

∂ y
(L−1)
p (t)

∂ w(l)
i (n)

NL∑
j=1

∂ y
(L)
j (t)

∂ s
(L)
j (t)

w
(L)
jp ε

(L)
j (t) =

=
n∑

t=1
λn−t

NL−1∑
p=1

∂ y
(L−1)
p (t)

∂ w(l)
i (n)

ε
(L−1)
p (t) =

=
n∑

t=1
λn−t

Nl∑
q=1

∂ y
(l)
p (t)

∂ w(l)
i (n)

ε
(l)
q (t) = 0,

(22)
where ε

(l)
p (t) denotes the error value in each

layer calculated back based on the next layers
of the network as follows

ε(l)
p (t) =

Nl+1∑
j=1

∂ y
(l+1)
j (t)

∂ s
(l+1)
j (t)

w
(l+1)
jp (n)ε

(l+1)
j (t) .

(23)
Then, the additional transformations of equa-
tion (22) are applied

n∑
t=1

λn−t
Nl∑

q=1

∂y
(l)
q (t)

∂w(l)
i (n)

ε
(l)
q (t) =

=
n∑

t=1
λn−t

Nl∑
q=1

∂y
(l)
q (t)

∂s
(l)
q (n)

∂s
(l)
q (t)

∂w(l)
i (n)

ε
(l)
q (t) =

=
n∑

t=1
λn−t ∂y

(l)
i (t)

∂s
(l)
i (n)

y(l−1)T (t)ε(l)
i (t) =

=
n∑

t=1
λn−t ∂y

(l)
i (t)

∂s
(l)
i (n)

y(l−1)T (t)
[
d

(l)
i (t)−y

(l)
i (t)

]
= 0.

(24)
Finally, the obtained form of an error measure
given by equation (24) is linearised to the fol-
lowing equation

f
(
b

(l)
i (t)

)
≈

≈ f
(
s

(l)
i (t)

)
+f ′

(
s

(l)
i (t)

)(
b

(l)
i (t)−s

(l)
i (t)

)
.

(25)
Then, the normal form of equation (24) along
with a linearisation step from equation (25) is
given as follows

n∑
t=1

λn−tf ′2
(
s

(l)
i (t)

)
·

·
[
b

(l)
i (t)−x(l)T (t)w(l)

i (n)
]
x(l)T (t) = 0.

(26)

The GQR algorithm entry point is obtained
from equation (26) by presenting it in a vector
form as shown in the following equation

A(l)
i (n)w(l)

i (n) = h(l)
i (n) , (27)

where

A(l)
i (n) =

n∑
t=1

λn−tf ′2
(
s

(l)
i (t)

)
x(l) (t)x(l)T (t),

(28)

h(l)
i (n) =

n∑
t=1

λn−tf ′2
(
s

(l)
i (t)

)
b

(l)
i (t)x(l) (t).

(29)
To improve equation readability the following
substitution is performed

z(l)
i (t) = f ′

(
s

(l)
i (t)

)
x(l) (t) . (30)

This results in a new form of equations 28
and 29 as follows

A(l)
i (n) =

n∑
t=1

λn−tz(l)
i (t)z(l)T

i (t), (31)

h(l)
i (n) =

n∑
t=1

λn−tf ′
(
s

(l)
i (t)

)
b

(l)
i (t)z(l)

i (t),

(32)
where b

(l)
i (n) is a linear expected value depicted

as

b
(l)
i (n) =




f−1
(
d

(l)
i (n)

)
for l = L

s
(l)
i (n)+ e

(l)
i (n) for l = 1 . . .L−1.

(33)
The error e

(k)
i (n) is obtained in back-

propagation process by

e
(k)
i (n) =

Nk+1∑
j=1

f ′
(
s

(k)
i (n)

)
w

(k+1)
ji (n)e

(k+1)
j (n)

for k = 1 . . .L−1.
(34)

Note, that equation (27) is a normal equation
and it needs to be solved for all neurons of a
network since each neuron computes its own
linear response

(
s

(l)
i

)
. Equation (27) can be

solved using Matrix Inversion Lemma [34] but
this method has a huge computational load. In
the GQR algorithm the equation (27) is solved
by the QR decomposition with the Givens rota-
tion as shown in the previous Sections. This ap-
proach allows to solve the equation (27) easily

294 Jarosław Bilski, Bartosz Kowalczyk, Andrzej Marjański, MichałGandor, Jacek Zurada

and quickly with limited computational load.
During the process Q(l)T

i (n) matrix is implicitly
calculated as shown in the following equations

Q(l)T
i (n)A(l)

i (n)w(l)
i (n) = Q(l)T

i (n)h(l)
i (n) ,

Q(l)T
i (n)Q(l)

i (n)R(l)
i (n)w(l)

i (n) = Q(l)T
i (n)h(l)

i (n) ,

R(l)
i (n)w(l)

i (n) = Q(l)T
i (n)h(l)

i (n)
(35)

where R(l)
i (n) are the upper-triangle matrices

(see Section 4). Vectors h(l)
i (n) are rotated

along with matrices A(l)
i (n). The decomposi-

tion process transformed matrices A(l)
i (n) into

upper-triangle matrices R(l)
i (n), whose inver-

sion is not very complex. The approximated
weights vectors are calculated according to the
following equation

ŵ(l)
i (n) = R(l)−1

i (n) Q(l)T
i (n) h(l)

i (n) . (36)

At the final stage the correction vector
ŵ(l)

i (n) − w(l)
i (n−1) is multiplied and applied

to the network as follows

w(l)
i (n) =

= w(l)
i (n−1)+η

(
ŵ(l)

i (n)−w(l)
i (n−1)

)
=

= (1−η)w(l)
i (n−1)+η ŵ(l)

i (n) ,
(37)

where η is a learning rate.
The Algorithm 1 presents the full procedure

of the GQR training algorithm for feedforward
neural networks.

6 Simulation results
This Section contains a detailed analysis of

the experimental results. To verify the perfor-
mance and stability of the GQR algorithm ex-
tensive tests have been carried out. The bench-
mark contains nine training problems, which
can be categorized by their nature and complex-
ity level. The first group is function approxima-
tions, where the Logistic curve, Hang, Sinc, and
Concrete problems belong. The second one is
the classification which contains the Two Spi-
rals, Abalone, and Iris datasets. Finally, the

special case benchmarks are the encoder and
parity problems. The Concrete, Abalone, and
Iris datasets are taken from the UCI - Machine
Learning Repository. The data have been nor-
malized to the values in range [−1,1].

Algorithm 1: The GQR algorithm
while the stopping criterion is not met do

for each sample n do
Perform network forward pass
Perform error backpropagation
Begin the GQR algorithm:
for each layer l do

for each neuron i do
Compute equations (30), (31), (32)
Begin the QR decomposition (35):
for p ← 0 until Nl−1 do

for q ← p+1 until Nl−1 +1 do
Calculate rotation parameters
as per equations (8) and (9).
Rotate the A(l)

i (n) matrix and
the h(l)

i (n) vector as per equa-
tions (15), (16), (17), (18).

end for
end for
Compute equation (36)
Perform weight update as per equa-
tion (37).

end for
end for

end for
end while

Each benchmark also covers a wide range of
networks. In order to simplify the nomencla-
ture, the authors refer to FCC-n as a fully con-
nected cascade network with n neurons. Sim-
ilarly, by MLP-[nL]L the authors refer to the
multilayered perceptron with L layers and nL

neurons in each one. Additionally, prefix FC
stands for a fully connected network.

Every scenario was trained by the GQR al-
gorithm and most popular variants of the Back
Propagation derivatives. This includes the Mo-
mentum variant (MBP), Nesterov’s Accelerated
Gradient (NAG), Quick Propagation (QProp),
Resilient Propagation (RProp) and the Adam
algorithm. Every trial was run 100 times with

295Jarosław Bilski, Bartosz Kowalczyk, Andrzej Marjański, MichałGandor, Jacek Zurada

and quickly with limited computational load.
During the process Q(l)T

i (n) matrix is implicitly
calculated as shown in the following equations

Q(l)T
i (n)A(l)

i (n)w(l)
i (n) = Q(l)T

i (n)h(l)
i (n) ,

Q(l)T
i (n)Q(l)

i (n)R(l)
i (n)w(l)

i (n) = Q(l)T
i (n)h(l)

i (n) ,

R(l)
i (n)w(l)

i (n) = Q(l)T
i (n)h(l)

i (n)
(35)

where R(l)
i (n) are the upper-triangle matrices

(see Section 4). Vectors h(l)
i (n) are rotated

along with matrices A(l)
i (n). The decomposi-

tion process transformed matrices A(l)
i (n) into

upper-triangle matrices R(l)
i (n), whose inver-

sion is not very complex. The approximated
weights vectors are calculated according to the
following equation

ŵ(l)
i (n) = R(l)−1

i (n) Q(l)T
i (n) h(l)

i (n) . (36)

At the final stage the correction vector
ŵ(l)

i (n) − w(l)
i (n−1) is multiplied and applied

to the network as follows

w(l)
i (n) =

= w(l)
i (n−1)+η

(
ŵ(l)

i (n)−w(l)
i (n−1)

)
=

= (1−η)w(l)
i (n−1)+η ŵ(l)

i (n) ,
(37)

where η is a learning rate.
The Algorithm 1 presents the full procedure

of the GQR training algorithm for feedforward
neural networks.

6 Simulation results
This Section contains a detailed analysis of

the experimental results. To verify the perfor-
mance and stability of the GQR algorithm ex-
tensive tests have been carried out. The bench-
mark contains nine training problems, which
can be categorized by their nature and complex-
ity level. The first group is function approxima-
tions, where the Logistic curve, Hang, Sinc, and
Concrete problems belong. The second one is
the classification which contains the Two Spi-
rals, Abalone, and Iris datasets. Finally, the

special case benchmarks are the encoder and
parity problems. The Concrete, Abalone, and
Iris datasets are taken from the UCI - Machine
Learning Repository. The data have been nor-
malized to the values in range [−1,1].

Algorithm 1: The GQR algorithm
while the stopping criterion is not met do

for each sample n do
Perform network forward pass
Perform error backpropagation
Begin the GQR algorithm:
for each layer l do

for each neuron i do
Compute equations (30), (31), (32)
Begin the QR decomposition (35):
for p ← 0 until Nl−1 do

for q ← p+1 until Nl−1 +1 do
Calculate rotation parameters
as per equations (8) and (9).
Rotate the A(l)

i (n) matrix and
the h(l)

i (n) vector as per equa-
tions (15), (16), (17), (18).

end for
end for
Compute equation (36)
Perform weight update as per equa-
tion (37).

end for
end for

end for
end while

Each benchmark also covers a wide range of
networks. In order to simplify the nomencla-
ture, the authors refer to FCC-n as a fully con-
nected cascade network with n neurons. Sim-
ilarly, by MLP-[nL]L the authors refer to the
multilayered perceptron with L layers and nL

neurons in each one. Additionally, prefix FC
stands for a fully connected network.

Every scenario was trained by the GQR al-
gorithm and most popular variants of the Back
Propagation derivatives. This includes the Mo-
mentum variant (MBP), Nesterov’s Accelerated
Gradient (NAG), Quick Propagation (QProp),
Resilient Propagation (RProp) and the Adam
algorithm. Every trial was run 100 times with

A NOVEL FAST FEEDFORWARD NEURAL NETWORKS . . .

an identical setup but a newly generated initial
network state.

6.1 Experiment methodology

The bench setup assumes several common
parameters for each trial. The most significant
ones are shown in Table 1. All experiments were
retried 100 times in order to gather valuable
statistics data. The training limit for all ap-
proximation and classification benchmarks was
set to 1000 epochs. After reaching this value,
the training is assumed to have failed. The tar-
get error threshold and its criterion was treated
as a problem specific. Each sample of a train-
ing set was presented in a random order in each
consecutive epoch.

Table 1. Common experiment setup

Epoch limit 1000
Experiment retry count 100
Sequence type Random

The experiment was concluded with a great
number of results. In order to gather the most
valuable data, performance factor ξ given by
equation (38) was established. All data pre-
sented in the subsequent Sections were gath-
ered with respect to the highest performance
factor ξ.

ξalgorithm = SuccessRatio
EpochAverage

(38)

The tables presented in the next Section
contain common definitions for all columns. η,
λ, α, inc and dec are the training parameters of
the respective algorithm. It needs to be noted
that not all parameters are used by all algo-
rithms. ”SR” is a success ratio expressed as %
of successful training trials. The column ”Ep.”
stands for the average epoch count required to
achieve a predefined error threshold. The ”T”
column shows an average convergence time in
milliseconds.

6.2 Logistic curve approximation
The logistic curve is a non-linear single argu-

ment function given by the following equation

f (x) = 4x(1−x) x ∈ [0,1]. (39)

The training set consists of 11 samples that cov-
ers the argument range of x ∈ [0,1]. The exper-
iment setup is summarized in Table 2.

Table 2. Setup for the logistic curve
approximation

Target error 0.001
Criterion Epoch average
Activation in hidden layers Hyperbolic tangent
Teaching sequence size 11

The logistic curve approximation was
trained using FCC networks starting with 2 up
to 7 neurons. Also a single FCMLP network
with one hidden layer and the total of 6 neurons
was used. The GQR algorithm performance in
each scenario is shown in Table 3.

Table 3. The results of the training logistic
curve problem by the GQR algorithm.
Network η λ SR Ep. T
FCC-2 0.1 0.87 92 56.71 1.20
FCC-3 0.05 0.8 86 38.09 1.00
FCC-4 0.007 0.62 82 26.63 0.76
FCC-5 0.01 0.63 66 18.52 0.64
FCC-6 0.003 0.74 82 24.54 1.03
FCC-7 0.007 0.73 53 18.96 0.99
FCMLP-5-1 0.007 0.7 100 18.33 0.58

The best 100% ratio was achieved using
an FCMLP network with η = 0.007 and λ =
0.7. The lowest value of epoch average (18.33)
emerges also for the FCMLP network. It can be
observed that by increasing the number of neu-
rons in FCC networks the success ratio drops
significantly - from 92% to 53%.

The GQR algorithm was compared with
some of the most common variants of the BP
derivatives. Table 4 covers the results of the
best trials of each algorithm along with all the
relevant training parameters for the FCMLP-5-
1 network.

296 Jarosław Bilski, Bartosz Kowalczyk, Andrzej Marjański, MichałGandor, Jacek Zurada

Table 4. The logistic curve training summary
for FCMLP-5-1 network.

Alg. η α inc dec λ SR Ep. T
Adam 0.01 - - - - 100 594.37 20.66
BP 0.1 - - - - 63 573.32 14.17
MBP 0.01 0.95 - - - 88 318.16 6.93
NAG 0.07 0.8 - - - 100 84.80 2.32
QProp 0.55 - - - - 91 255.29 7.63
RProp - - 1.05 0.7 - 99 207.67 4.45
GQR 0.007 - - - 0.7 100 18.33 0.58

For the logistic function approximation the
most stable training process was held by the
GQR and NAG algorithms. In both cases ev-
ery training trial ended with a success. How-
ever, the GQR algorithm required only 18.33
epochs on average to establish the given train-
ing goal. The exemplary convergence process of
the logistic curve approximation closest to the
average is shown in Figure 4.

Figure 4. Convergence for the logistic curve
problem using FCMLP-5-1 network

6.3 Hang approximation
Hang is a non-linear two argument function

given as

f (x1,x2) =
(

1+ x−2
1 +

√
x−3

2

)2
x1,x2 ∈ [1,5].

(40)
A training set consists of 50 samples that cover
the argument range in x1,x2 ∈ [1,5]. Hang ex-
periment setup is summarized in Table 5.

In the Hang function approximation bench-
mark, FCC networks with 8 up to 18 neurons
and a single FCMLP network with one hidden
layer with 16 neurons in total was trained. Ta-
ble 6 summarizes the GQR algorithm perfor-
mance in each scenario.

Table 5. Setup for the Hang approximation

Target error 0.001
Criterion Epoch average
Activation in hidden layers Hyperbolic tangent
Teaching sequence size 50

Table 6. The results of training the Hang
problem using the GQR algorithm.

Network η λ SR Ep. T
FCC-8 0.007 0.99 91 54 15.85
FCC-10 0.009 0.995 91 43.48 23.64
FCC-12 0.005 0.995 96 39.99 30.78
FCC-14 0.001 0.985 98 36.28 38.06
FCC-16 0.001 0.915 87 26.86 44.51
FCC-18 0.0009 0.915 85 24.39 55.12
FCMLP-15-1 0.03 0.97 100 25.02 12.18

The success rate varies between 85 and
100%. The number of neurons in FCC networks
clearly affects the average epoch count. The
more neurons there are in a network, the faster
the convergence is. The best performance with
the highest success ratio (100%) is observed for
the FCMLP network where barely 25 epochs
(12.18 ms) on average were required for a suc-
cessful training.

During the Hang approximation training
the GQR algorithm and several variants of the
BP derivatives were tested. Table 7 presents
the best results with respect to the performance
factor 38 achieved by all of the tested training
methods using the FCMLP-15-1 network.

Table 7. The Hang training summary for the
FCMLP-15-1 network.

Alg. η α inc dec λ SR Ep. T
Adam 0.01 - - - - 70 505.26 77.04
BP 0.03 - - - - 73 596.04 52.50
MBP 0.007 0.75 - - - 96 461.48 43.22
NAG 0.003 0.9 - - - 56 471.45 77.25
QProp 0.8 - - - - 33 727.03 60.37
RProp - - 1.1 0.65 - 54 731.02 57.54
GQR 0.03 - - - 0.97 100 25.02 12.18

The GQR algorithm achieved the best 100%
success ratio. It also manifests a very short con-
vergence time (25.02 epochs and 12.18 ms on

297Jarosław Bilski, Bartosz Kowalczyk, Andrzej Marjański, MichałGandor, Jacek Zurada

Table 4. The logistic curve training summary
for FCMLP-5-1 network.

Alg. η α inc dec λ SR Ep. T
Adam 0.01 - - - - 100 594.37 20.66
BP 0.1 - - - - 63 573.32 14.17
MBP 0.01 0.95 - - - 88 318.16 6.93
NAG 0.07 0.8 - - - 100 84.80 2.32
QProp 0.55 - - - - 91 255.29 7.63
RProp - - 1.05 0.7 - 99 207.67 4.45
GQR 0.007 - - - 0.7 100 18.33 0.58

For the logistic function approximation the
most stable training process was held by the
GQR and NAG algorithms. In both cases ev-
ery training trial ended with a success. How-
ever, the GQR algorithm required only 18.33
epochs on average to establish the given train-
ing goal. The exemplary convergence process of
the logistic curve approximation closest to the
average is shown in Figure 4.

Figure 4. Convergence for the logistic curve
problem using FCMLP-5-1 network

6.3 Hang approximation
Hang is a non-linear two argument function

given as

f (x1,x2) =
(

1+ x−2
1 +

√
x−3

2

)2
x1,x2 ∈ [1,5].

(40)
A training set consists of 50 samples that cover
the argument range in x1,x2 ∈ [1,5]. Hang ex-
periment setup is summarized in Table 5.

In the Hang function approximation bench-
mark, FCC networks with 8 up to 18 neurons
and a single FCMLP network with one hidden
layer with 16 neurons in total was trained. Ta-
ble 6 summarizes the GQR algorithm perfor-
mance in each scenario.

Table 5. Setup for the Hang approximation

Target error 0.001
Criterion Epoch average
Activation in hidden layers Hyperbolic tangent
Teaching sequence size 50

Table 6. The results of training the Hang
problem using the GQR algorithm.

Network η λ SR Ep. T
FCC-8 0.007 0.99 91 54 15.85
FCC-10 0.009 0.995 91 43.48 23.64
FCC-12 0.005 0.995 96 39.99 30.78
FCC-14 0.001 0.985 98 36.28 38.06
FCC-16 0.001 0.915 87 26.86 44.51
FCC-18 0.0009 0.915 85 24.39 55.12
FCMLP-15-1 0.03 0.97 100 25.02 12.18

The success rate varies between 85 and
100%. The number of neurons in FCC networks
clearly affects the average epoch count. The
more neurons there are in a network, the faster
the convergence is. The best performance with
the highest success ratio (100%) is observed for
the FCMLP network where barely 25 epochs
(12.18 ms) on average were required for a suc-
cessful training.

During the Hang approximation training
the GQR algorithm and several variants of the
BP derivatives were tested. Table 7 presents
the best results with respect to the performance
factor 38 achieved by all of the tested training
methods using the FCMLP-15-1 network.

Table 7. The Hang training summary for the
FCMLP-15-1 network.

Alg. η α inc dec λ SR Ep. T
Adam 0.01 - - - - 70 505.26 77.04
BP 0.03 - - - - 73 596.04 52.50
MBP 0.007 0.75 - - - 96 461.48 43.22
NAG 0.003 0.9 - - - 56 471.45 77.25
QProp 0.8 - - - - 33 727.03 60.37
RProp - - 1.1 0.65 - 54 731.02 57.54
GQR 0.03 - - - 0.97 100 25.02 12.18

The GQR algorithm achieved the best 100%
success ratio. It also manifests a very short con-
vergence time (25.02 epochs and 12.18 ms on

A NOVEL FAST FEEDFORWARD NEURAL NETWORKS . . .

average) comparing to all of the tested BP vari-
ants. Figure 5 illustrates the exemplary conver-
gence process of the Hang function approxima-
tion that is the closest to the average.

Figure 5. Convergence for the Hang
approximation problem using FCMLP-15-1

network

6.4 Sinc approximation
Sinc is a non-linear two argument function

defined by the following formula

f(x1,x2) =




1 x1 = x2 = 0
sinx2

x2
x1 = 0∧x2 ̸= 0

sinx1
x1

x2 = 0∧x1 ̸= 0
sinx1

x1
sinx2

x2
for other cases

(41)
The training set contains 121 samples, which
corresponds to the unnormalized Sinc function
with arguments in range x1,x2 ∈ [−10,10]. The
Sinc experiment setup is summarized in Table 8.

Table 8. Setup for the Sinc approximation

Target error 0.005
Criterion Epoch average
Activation in hidden layers Hyperbolic tangent
Teaching sequence size 121

During the Sinc experiment the same net-
works as in the Hang benchmark were used.
This means the FCC with 8 to 18 neurons and
FCMLP-15-1 networks were used in the experi-
ment. The GQR algorithm performance across
all scenarios is shown in Table 9.

Table 9. The results of the Sinc training
problem by the GQR algorithm.

Network η λ SR Ep. T
FCC-8 0.03 0.94 100 10.39 9.58
FCC-10 0.03 0.97 100 6.88 7.48
FCC-12 0.03 0.975 100 6.03 11.92
FCC-14 0.01 0.93 100 5.03 14.52
FCC-16 0.01 0.96 100 4.51 21.47
FCC-18 0.01 0.97 100 4.24 27.97
FCMLP-15-1 0.009 0.99 100 108.36 94.29

The Sinc approximation problem showed a
great stability of the GQR training resulting in
100% success ratio for all the scenarios. With
the use of the FCC networks most trials re-
quired less than 11 epochs to achieve a defined
error threshold. Also by increasing the neuron
count in the FCC networks there is a visible
trend of an average of fewer required epochs.
The FCC network seems to be capable of han-
dling the Sinc problem much better than the
classic FCMLP network where the training took
108.36 epochs (94.29 ms) on average.

In order to maintain a consistent approach
to the presented data across all benchmarks the
best results for the FCMLP-15-1 network with
respect to the performance factor 38 are shown
in Table 10. In the Sinc scenario the same al-
gorithms were used in comparison to the Hang
training.

Table 10. The Sinc training summary for the
FCC-18 network.

Alg. η α inc dec λ SR Ep. T
Adam 0.001 - - - - 100 34.14 43.92
BP 0.007 - - - - 100 70.73 55.74
MBP 0.0005 0.95 - - - 100 54.12 43.20
NAG 0.001 0.95 - - - 100 64.06 134.99
QProp 0.68 - - - - 58 398.36 282.13
RProp - - 1.1 0.6 - 98 493.45 320.93
GQR 0.01 - - - 0.97 100 4.24 27.97

The highest performance out of all tested
algorithms is observed during the GQR train-
ing with 100% success ratio and 4.24 epochs
(27.97 ms) on average. In Figure 6 presented is
the exemplary convergence processes closest to
the average of the Sinc function approximation
training.

298 Jarosław Bilski, Bartosz Kowalczyk, Andrzej Marjański, MichałGandor, Jacek Zurada

Figure 6. Convergence for the Sinc
approximation problem using the FCC-18

network

6.5 Concrete dataset
The Concrete dataset corresponds to the

highly nonlinear function which outputs the
concrete compressive strength based on the
used ingredients and age of the compound. The
training set utilized in this benchmark contains
1030 samples with 8 inputs in each. Table 11
shows the initial training parameters.

Table 11. The initial setup for the Concrete
training

Target error 0.001
Criterion Epoch average
Activation in hidden layers Hyperbolic tangent
Teaching sequence size 1030

Due to high complexity of the benchmark
function the GQR experiment covers wide range
of tested networks. Table 12 presents the GQR
algorithm performance for each attempted net-
work.

Table 12. The results of the Concrete
training by the GQR algorithm.

Network η λ SR Ep. T
FCC-7 0.01 0.98 99 38.26 598.04
FCC-8 0.005 0.98 100 27.13 507.89
FCC-9 0.009 0.99 99 22.56 675.34
FCMLP-4-4-1 0.009 0.98 100 25.82 428.77
FCMLP-6-6-1 0.009 0.99 100 17.26 575.92
FCMLP-8-8-1 0.009 0.99 100 13.88 864.35
MLP-4-4-1 0.009 0.97 57 118.04 838.82
MLP-6-6-1 0.01 0.98 100 32.46 432.07
MLP-8-8-1 0.01 0.98 100 20.33 408.92

In order to establish the overall GQR al-
gorithm performance it has been compared to
other commonly used algorithms. Table 13
summarizes the achieved performance of the
tested training methods for the MLP-6-6-1 net-
work.

Table 13. The summary of the Concrete
training utilizing MLP-6-6-1 network.

Alg. η α inc dec λ SR Ep. T
Adam 0.001 - - - - 100 165.30 615.37
BP 0.03 - - - - 100 219.19 547.49
MBP 0.007 0.8 - - - 100 201.66 594.46
NAG 0.005 0.9 - - - 92 406.24 1937.19
QProp 0.05 - - - - 17 782 1755.06
RProp - - 1.15 0.6 - 41 664.17 1350.04
GQR 0.01 - - - 0.98 100 32.46 432.07

The Concrete Compressive Strength bench-
mark manifests the great GQR performance.
Figure 7 shows exemplary close to average con-
vergence process of the tested methods.

Figure 7. Example convergence for the
Concrete problem using the MLP-6-6-1

network

6.6 Two spirals classification
The two spirals is a well known classification

problem which acts as a universal benchmark
for neural network training algorithms. The
used training set contains 96 samples, which
corresponds to points in a 3-dimensional space.
Each point ”belongs” to either bottom or top
spirals. The two spirals experiment setup is
summarized in Table 14.

299Jarosław Bilski, Bartosz Kowalczyk, Andrzej Marjański, MichałGandor, Jacek Zurada

Figure 6. Convergence for the Sinc
approximation problem using the FCC-18

network

6.5 Concrete dataset
The Concrete dataset corresponds to the

highly nonlinear function which outputs the
concrete compressive strength based on the
used ingredients and age of the compound. The
training set utilized in this benchmark contains
1030 samples with 8 inputs in each. Table 11
shows the initial training parameters.

Table 11. The initial setup for the Concrete
training

Target error 0.001
Criterion Epoch average
Activation in hidden layers Hyperbolic tangent
Teaching sequence size 1030

Due to high complexity of the benchmark
function the GQR experiment covers wide range
of tested networks. Table 12 presents the GQR
algorithm performance for each attempted net-
work.

Table 12. The results of the Concrete
training by the GQR algorithm.

Network η λ SR Ep. T
FCC-7 0.01 0.98 99 38.26 598.04
FCC-8 0.005 0.98 100 27.13 507.89
FCC-9 0.009 0.99 99 22.56 675.34
FCMLP-4-4-1 0.009 0.98 100 25.82 428.77
FCMLP-6-6-1 0.009 0.99 100 17.26 575.92
FCMLP-8-8-1 0.009 0.99 100 13.88 864.35
MLP-4-4-1 0.009 0.97 57 118.04 838.82
MLP-6-6-1 0.01 0.98 100 32.46 432.07
MLP-8-8-1 0.01 0.98 100 20.33 408.92

In order to establish the overall GQR al-
gorithm performance it has been compared to
other commonly used algorithms. Table 13
summarizes the achieved performance of the
tested training methods for the MLP-6-6-1 net-
work.

Table 13. The summary of the Concrete
training utilizing MLP-6-6-1 network.

Alg. η α inc dec λ SR Ep. T
Adam 0.001 - - - - 100 165.30 615.37
BP 0.03 - - - - 100 219.19 547.49
MBP 0.007 0.8 - - - 100 201.66 594.46
NAG 0.005 0.9 - - - 92 406.24 1937.19
QProp 0.05 - - - - 17 782 1755.06
RProp - - 1.15 0.6 - 41 664.17 1350.04
GQR 0.01 - - - 0.98 100 32.46 432.07

The Concrete Compressive Strength bench-
mark manifests the great GQR performance.
Figure 7 shows exemplary close to average con-
vergence process of the tested methods.

Figure 7. Example convergence for the
Concrete problem using the MLP-6-6-1

network

6.6 Two spirals classification
The two spirals is a well known classification

problem which acts as a universal benchmark
for neural network training algorithms. The
used training set contains 96 samples, which
corresponds to points in a 3-dimensional space.
Each point ”belongs” to either bottom or top
spirals. The two spirals experiment setup is
summarized in Table 14.

A NOVEL FAST FEEDFORWARD NEURAL NETWORKS . . .

Table 14. Setup for the two spirals
classification

Target error 0.05
Criterion Epoch average
Activation in hidden layers Hyperbolic tangent
Teaching sequence size 96

Similar to the previous experiments the two
spirals problem involved the FCC with 8 to 18
neurons and a fully connected FCMLP network
containing 3 hidden layers with a total of 16
neurons. Table 15 summarizes the GQR algo-
rithm performance in each scenario with respect
to performance factor 38.

Table 15. The results of training the Two
Spirals problem by the GQR algorithm.

Network η λ SR Ep. T
FCC-8 0.03 0.995 89 57.31 36.28
FCC-10 0.005 0.975 82 34.74 38.46
FCC-12 0.009 0.99 92 27.51 40.98
FCC-14 0.01 0.995 97 25.61 55.94
FCC-16 0.009 0.995 96 23.49 71.98
FCC-18 0.003 0.97 82 20.32 81.42
FCMLP-5-5-5-1 0.009 0.99 99 25.46 54.70

In all cases the GQR algorithm achieved a
rather satisfying success ratio (SR ≥ 82%) with
fewer than 57 epochs on average. The FCMLP
network seems to be the most stable having 99%
of successful trials with an average of 25.46 re-
quired epochs. It can be observed that the suc-
cess ratio is reduced to 82% in the FCC-18 sce-
nario.

The two spirals classification benchmark in-
volved the same set of BP derivatives as for the
previous trials in comparison to the GQR al-
gorithm. Table 16 presents the best results in
respect to performance factor (38) achieved in
the FCMLP-5-5-5-1 network training across all
the tested training methods.

Table 16. The Two Spirals training summary
for the FCMLP-5-5-5-1 network.

Alg. η α inc dec λ SR Ep. T
Adam 0.001 - - - - 94 552.65 294.15
BP 0.007 - - - - 81 629.73 224.24
MBP 0.0005 0.95 - - - 84 591.38 214.16
NAG 0.005 0.75 - - - 41 583.49 443.39
QProp 0.007 - - - - 29 578.69 209.36
RProp - - 1.05 0.75 - 47 594.43 224.25
GQR 0.009 - - - 0.99 99 25.46 54.70

The success ratio diversity proved to be very
big. The highest value of 99% was achieved
by the GQR algorithm with only 25.46 epochs
(54.70 ms) on average. The worst performing
algorithms in the Two Spirals benchmark turns
out to be the QProp, NAG and RProp (suc-
cess ratio below 50%). The experiment confirms
that the classic BP and its momentum variant
is able to achieve a rather high success ratio for
very low values of training step (η). However,
this results in a big training effort in terms of
average amount of time and epoch number. The
example of closest to the average convergence
processes for the best trials of the Two Spirals
classification training is shown in Figure 8.

Figure 8. Convergence for the Two Spirals
problem using the FCMLP-5-5-5-1 network

6.7 Abalone dataset
The Abalone dataset is a universal classifi-

cation benchmark that found many use cases in
the Machine Learning domain. The training se-
quence contains 4177 samples with 8 attributes.
Each corresponds to the physical measurement
of the abalone. Based on this information, a
well trained neural network can estimate the
age of the abalone. Table 17 contains experi-
ment setup.

Table 17. The initial setup for the Abalone
training

Target error 0.012
Criterion Epoch average
Activation in hidden layers Hyperbolic tangent
Teaching sequence size 4177

300 Jarosław Bilski, Bartosz Kowalczyk, Andrzej Marjański, MichałGandor, Jacek Zurada

To establish the best training parameters
and a suitable network topology a detailed ex-
periment has been conducted. Several networks
and a wide range of training parameters have
been examined. Table 18 presents the GQR al-
gorithm performance along with the best train-
ing parameters.

Table 18. The results of the Abalone training
by the GQR algorithm.

Network η λ SR Ep. T
FCC-3 0.003 0.99 100 15.30 310.59
FCC-4 0.003 0.99 100 6.90 201.57
FCC-5 0.0007 0.99 100 5.70 228.87
FCMLP-2-2-1 0.005 0.99 100 5.30 157.60
FCMLP-4-4-1 0.0007 0.99 100 3.20 288.70
FCMLP-6-6-1 0.0005 0.98 100 2.80 461.72
MLP-2-2-1 0.009 0.99 100 4.30 64.65
MLP-4-4-1 0.007 0.99 100 2.90 99.70
MLP-6-6-1 0.003 0.96 100 2.90 135.35

The GQR algorithm has also been compared
with several well-known training methods. The
experiment results show that the proposed al-
gorithm performance is superior to the classic
methods of feedforward neural networks train-
ing. Table 19 contains the benchmark summary
of all attempted algorithms.

Table 19. The summary of the Abalone
training utilizing MLP-2-2-1 network.

Alg. η α inc dec λ SR Ep. T
Adam 0.001 - - - - 100 20.80 101.25
BP 0.05 - - - - 100 29.90 95.89
MBP 0.01 0.7 - - - 100 25.40 92.72
NAG 0.007 0.9 - - - 100 61.90 480.41
QProp 0.51 - - - - 100 289 812.73
RProp - - 1.1 0.45 - 100 212.30 566.06
GQR 0.009 - - - 0.99 100 4.30 64.65

The great performance of the GQR algo-
rithm in the Abalone benchmark can also be
observed in Figure 9, which shows exemplary,
closes to the average convergence process for
the MLP-2-2-1 network.

Figure 9. Example convergence for the
Abalone problem using the MLP-2-2-1 network

6.8 Iris dataset
The Iris benchmark utilizes the well known

Iris plant dataset. It contains a total of 150
samples with 4 attributes which correspond to
the one out of three iris plant classes. Each class
is represented by 50 samples. Table 20 contains
the Iris benchmark’s initial setup.

Table 20. The initial setup for the Iris
training

Target error 0.05
Criterion Epoch average
Activation in hidden layers Hyperbolic tangent
Teaching sequence size 150

The performance of the GQR algorithm
during Iris dataset training has been tested on
several feedforward neural network topologies.
The results have been combined and presented
in Table 21. It can be observed that the MLP
networks handle Iris training better than their
fully connected counterparts.

Table 21. The results of the Iris training by
the GQR algorithm.

Network η λ SR Ep. T
FCMLP-2-2-3 0.1 0.99 95 26.31 23.34
FCMLP-4-4-3 0.03 0.98 96 19.34 44.80
FCMLP-6-6-3 0.05 0.98 97 16.43 67.33
MLP-2-2-3 0.03 0.99 89 20.65 6.25
MLP-4-4-3 0.01 0.98 98 15.48 10.93
MLP-6-6-3 0.03 0.98 100 12.83 22.74

301Jarosław Bilski, Bartosz Kowalczyk, Andrzej Marjański, MichałGandor, Jacek Zurada

To establish the best training parameters
and a suitable network topology a detailed ex-
periment has been conducted. Several networks
and a wide range of training parameters have
been examined. Table 18 presents the GQR al-
gorithm performance along with the best train-
ing parameters.

Table 18. The results of the Abalone training
by the GQR algorithm.

Network η λ SR Ep. T
FCC-3 0.003 0.99 100 15.30 310.59
FCC-4 0.003 0.99 100 6.90 201.57
FCC-5 0.0007 0.99 100 5.70 228.87
FCMLP-2-2-1 0.005 0.99 100 5.30 157.60
FCMLP-4-4-1 0.0007 0.99 100 3.20 288.70
FCMLP-6-6-1 0.0005 0.98 100 2.80 461.72
MLP-2-2-1 0.009 0.99 100 4.30 64.65
MLP-4-4-1 0.007 0.99 100 2.90 99.70
MLP-6-6-1 0.003 0.96 100 2.90 135.35

The GQR algorithm has also been compared
with several well-known training methods. The
experiment results show that the proposed al-
gorithm performance is superior to the classic
methods of feedforward neural networks train-
ing. Table 19 contains the benchmark summary
of all attempted algorithms.

Table 19. The summary of the Abalone
training utilizing MLP-2-2-1 network.

Alg. η α inc dec λ SR Ep. T
Adam 0.001 - - - - 100 20.80 101.25
BP 0.05 - - - - 100 29.90 95.89
MBP 0.01 0.7 - - - 100 25.40 92.72
NAG 0.007 0.9 - - - 100 61.90 480.41
QProp 0.51 - - - - 100 289 812.73
RProp - - 1.1 0.45 - 100 212.30 566.06
GQR 0.009 - - - 0.99 100 4.30 64.65

The great performance of the GQR algo-
rithm in the Abalone benchmark can also be
observed in Figure 9, which shows exemplary,
closes to the average convergence process for
the MLP-2-2-1 network.

Figure 9. Example convergence for the
Abalone problem using the MLP-2-2-1 network

6.8 Iris dataset
The Iris benchmark utilizes the well known

Iris plant dataset. It contains a total of 150
samples with 4 attributes which correspond to
the one out of three iris plant classes. Each class
is represented by 50 samples. Table 20 contains
the Iris benchmark’s initial setup.

Table 20. The initial setup for the Iris
training

Target error 0.05
Criterion Epoch average
Activation in hidden layers Hyperbolic tangent
Teaching sequence size 150

The performance of the GQR algorithm
during Iris dataset training has been tested on
several feedforward neural network topologies.
The results have been combined and presented
in Table 21. It can be observed that the MLP
networks handle Iris training better than their
fully connected counterparts.

Table 21. The results of the Iris training by
the GQR algorithm.

Network η λ SR Ep. T
FCMLP-2-2-3 0.1 0.99 95 26.31 23.34
FCMLP-4-4-3 0.03 0.98 96 19.34 44.80
FCMLP-6-6-3 0.05 0.98 97 16.43 67.33
MLP-2-2-3 0.03 0.99 89 20.65 6.25
MLP-4-4-3 0.01 0.98 98 15.48 10.93
MLP-6-6-3 0.03 0.98 100 12.83 22.74

A NOVEL FAST FEEDFORWARD NEURAL NETWORKS . . .

The Iris dataset has also been tested with a
set of BP derived training methods and com-
pared to the proposed GQR algorithm. Ta-
ble 22 contains results of the iris plant classi-
fication problem.

Table 22. The summary of the Iris training
utilizing MLP-2-2-3 network.

Alg. η α inc dec λ SR Ep. T
Adam 0.01 - - - - 100 38.63 9.43
BP 0.05 - - - - 100 53.06 6.65
MBP 0.003 0.95 - - - 100 47.24 7.31
NAG 0.009 0.9 - - - 100 68.82 18.90
QProp 0.7 - - - - 79 180.97 24.19
RProp - - 1.5 0.6 - 86 179.98 26.30
GQR 0.03 - - - 0.99 89 20.65 6.25

Figure 10 shows exemplary, closest to the
average training convergence process of selected
algorithms.

Figure 10. Example convergence for the Iris
problem using the MLP-2-2-3 network

6.9 Encoder
The encoder/decoder problems, also simply

called ”encoders”, are special cases of classifi-
cation tasks in which the network has to find
a way to simulate one-hot code encoder. The
biggest challenge for this benchmark is to du-
plicate the presented input pattern in the out-
put layer having only a few hidden neurons
available. To handle this problem correctly the
MLP-N -M -N networks are used. This struc-
ture corresponds to N network inputs/outputs
and M neurons in a single hidden layer. The
training set also contains N samples. In or-
der to prevent a network from ”memorizing”
the patterns rather than extract unique fea-

tures, the ”tight” encoders are used. In this
case the number of hidden neurons is calculated
as M = log2 N .

In this paper the tight encoder MLP-2-4 was
used. The training goal was set to 0.1 as an er-
ror average. The sigmoid function was used as
an activation in the hidden neurons. The setup
summary is shown in Table 23.

Table 23. Setup for the MLP-2-4 encoder
problem

Target error 0.1
Criterion Epoch average
Activation in hidden layers Signoid
Teaching sequence size 4

The MLP-2-4 encoder was trained by the
GQR and selected BP derived algorithms. Dur-
ing the process, the experiment reveals the best
individual parameters for every method. It re-
sults with a high success ratio of 100% across all
the tested methods. The detailed summary of
the selected parameters and individual methods
performance are shown in Table 24.

Table 24. The training summary for the
MLP-2-4 encoder.

Alg. η α inc dec λ SR Ep. T
Adam 0.01 - - - - 100 136.02 3.24
BP 0.9 - - - - 100 49.28 0.88
MBP 0.3 0.85 - - - 100 26.78 0.71
NAG 0.1 0.9 - - - 100 36.35 1.04
QProp 0.1 - - - - 100 31.90 0.64
RProp - - 1.3 0.7 - 100 32.02 0.58
GQR 0.07 - - - 0.62 100 7.87 0.20

The best performance was achieved by the
GQR algorithm which requires only 7.87 epochs
(0.20 ms) on average to establish the accepted
error criterion. The classic BP method took
fewer than 50 epochs. It is worth noting that
despite the GQR’s bigger complexity comparing
to BP derived variants, it is still faster due to
a significant reduction of required epochs. The
exemplary training process that is the closest
to the average trial is shown in Figure 11.

302 Jarosław Bilski, Bartosz Kowalczyk, Andrzej Marjański, MichałGandor, Jacek Zurada

Figure 11. Example convergence for the
encoder problem using the MLP-2-4 network.

6.10 Parity detection
The n-bit parity detection problem origi-

nates from the electronic circuits domain. This
technique is commonly used for detecting trans-
mission errors. In the parity benchmark a neu-
ral network needs to simulate the logical n-
input XNOR gate in order to detect the even
number of high states in the input vector. The
training set contains n2 samples.

An effort was made to train the set of net-
works to simulate a 4-bit parity detection cir-
cuit. The training sequence consists of 16 sam-
ples. The single output of the network should
either be of low or high state (logical 0 or 1)
depending on the number of high bits in the
presented sample. The error criterion was set
to be not greater than the maximum of 0.1 in
an epoch. The sigmoid was used as an activa-
tion in the hidden layer. Table 25 contains de-
tailed information regarding the parity bench-
mark setup.

Table 25. Setup for the MLP-2-4 encoder
problem

Target error 0.1
Criterion Epoch max
Activation in hidden layers Signoid
Teaching sequence size 25

The proposed GQR algorithm manifests su-
perior performance for each trained network.
Table 26 contains the results achieved by the
GQR training.

Table 26. The results of training the 4-bit
parity detection problem by the GQR

algorithm.
Network η λ SR Ep. T
FCC-2 0.09 0.99 100 4.64 0.15
FCC-3 0.1 0.995 100 4.51 0.26
FCC-4 0.1 0.995 100 4.40 0.25
MLP-10-1 0.3 0.985 100 2.29 0.22
MLP-2-2-1 0.3 0.995 100 2.43 0.09
MLP-3-3-1 0.3 0.985 100 2.41 0.13
MLP-4-4-1 0.3 0.985 100 2.35 0.17

The initial approach to the parity problem
was to find the best parameters for each of the
tested training methods. All of them achieved
a high (100%) value of the success ratio. Ta-
ble 27 contains the best parameters and statis-
tics summary.

Table 27. The 4-bit parity detection training
summary for the MLP-2-2-1 network.

Alg. η α inc dec λ SR Ep. T
Adam 0.01 - - - - 100 4.02 0.11
BP 0.03 - - - - 100 6.83 0.17
MBP 0.007 0.85 - - - 100 3.65 0.10
NAG 0.009 0.95 - - - 96 71.98 2.45
QProp 0.03 - - - - 93 15.61 0.38
RProp - - 1.45 0.25 - 93 16.41 0.39
GQR 0.3 - - - 0.995 100 2.43 0.09

The parity benchmark strongly manifests
the great performance of the GQR algorithm.
Despite the strict error criterion our training
method requires no more than 2.43 epochs
(0.09 ms) on average to satisfy the rough train-
ing requirements. The second best performing
method in this scenario turns out to be the
MBP algorithm with an average of 3.65 required
epochs (0.10 ms). Figure 12 presents an exem-
plary, closest to the average, convergence pro-
cess for the 4-bit parity detection problem. It
is also worth noting how, the GQR algorithm is
able to drop the error directly into the desired
threshold in only a single epoch.

303Jarosław Bilski, Bartosz Kowalczyk, Andrzej Marjański, MichałGandor, Jacek Zurada

Figure 11. Example convergence for the
encoder problem using the MLP-2-4 network.

6.10 Parity detection
The n-bit parity detection problem origi-

nates from the electronic circuits domain. This
technique is commonly used for detecting trans-
mission errors. In the parity benchmark a neu-
ral network needs to simulate the logical n-
input XNOR gate in order to detect the even
number of high states in the input vector. The
training set contains n2 samples.

An effort was made to train the set of net-
works to simulate a 4-bit parity detection cir-
cuit. The training sequence consists of 16 sam-
ples. The single output of the network should
either be of low or high state (logical 0 or 1)
depending on the number of high bits in the
presented sample. The error criterion was set
to be not greater than the maximum of 0.1 in
an epoch. The sigmoid was used as an activa-
tion in the hidden layer. Table 25 contains de-
tailed information regarding the parity bench-
mark setup.

Table 25. Setup for the MLP-2-4 encoder
problem

Target error 0.1
Criterion Epoch max
Activation in hidden layers Signoid
Teaching sequence size 25

The proposed GQR algorithm manifests su-
perior performance for each trained network.
Table 26 contains the results achieved by the
GQR training.

Table 26. The results of training the 4-bit
parity detection problem by the GQR

algorithm.
Network η λ SR Ep. T
FCC-2 0.09 0.99 100 4.64 0.15
FCC-3 0.1 0.995 100 4.51 0.26
FCC-4 0.1 0.995 100 4.40 0.25
MLP-10-1 0.3 0.985 100 2.29 0.22
MLP-2-2-1 0.3 0.995 100 2.43 0.09
MLP-3-3-1 0.3 0.985 100 2.41 0.13
MLP-4-4-1 0.3 0.985 100 2.35 0.17

The initial approach to the parity problem
was to find the best parameters for each of the
tested training methods. All of them achieved
a high (100%) value of the success ratio. Ta-
ble 27 contains the best parameters and statis-
tics summary.

Table 27. The 4-bit parity detection training
summary for the MLP-2-2-1 network.

Alg. η α inc dec λ SR Ep. T
Adam 0.01 - - - - 100 4.02 0.11
BP 0.03 - - - - 100 6.83 0.17
MBP 0.007 0.85 - - - 100 3.65 0.10
NAG 0.009 0.95 - - - 96 71.98 2.45
QProp 0.03 - - - - 93 15.61 0.38
RProp - - 1.45 0.25 - 93 16.41 0.39
GQR 0.3 - - - 0.995 100 2.43 0.09

The parity benchmark strongly manifests
the great performance of the GQR algorithm.
Despite the strict error criterion our training
method requires no more than 2.43 epochs
(0.09 ms) on average to satisfy the rough train-
ing requirements. The second best performing
method in this scenario turns out to be the
MBP algorithm with an average of 3.65 required
epochs (0.10 ms). Figure 12 presents an exem-
plary, closest to the average, convergence pro-
cess for the 4-bit parity detection problem. It
is also worth noting how, the GQR algorithm is
able to drop the error directly into the desired
threshold in only a single epoch.

A NOVEL FAST FEEDFORWARD NEURAL NETWORKS . . .

Figure 12. Example convergence for the 4-bit
parity problem using the MLP-4-2-2-1

network. Note that chart series are presenting
the average error value while the training

target is maximum epoch error.

7 Conclusions
The GQR algorithm originates from the Re-

cursive Least Squares method, which is widely
used in the adaptive filters area. As shown in
this paper the presented method significantly
differs from the well known Back Propagation
algorithm and its derived variants. It also sig-
nificantly speeds up the training in terms of
average epoch count and time duration. The
GQR algorithm is characterized by high stabil-
ity and reproducibility of results across all the
tested scenarios while maintaining a very high
success ratio.

Based on the convergence curves presented
in Section 6, the typical behaviour of the tested
methods can be observed. The curves of the BP
algorithm and its momentum variants (MBP
and NAG) are rugged while slowly progressing
towards the optimal solution. Also, the com-
mon behaviour of the QProp and RProp algo-
rithms can be observed. The training processes
carried out by both methods are rather smooth
and only occasionally burdened with some dis-
turbances. The GQR training process manifests
the shortest convergence time by a sudden drop
of the global error value and then progresses to
the fine tuning if it is still needed.

The presented algorithm performs weight
update after each sample presentation. It can
be noted that despite a bigger complexity when
compared to the BP based algorithms, the GQR

algorithm gives a much better performance in
terms of epochs count and training time. The
training time of the presented method can be re-
duced by parallel implementation. It is caused
by high scalability of the GQR algorithm be-
cause an update of each neuron requires only
its local data that are available just after the
error backpropagation.

The most important advantages of the GQR
algorithm can be summarized:

– the number of training epochs is significantly
reduced,

– training time is much shorter,

– overall success ratio is very high,

– the method can be parallelized.

Our further research will focus on a paral-
lel variant of the GQR algorithm similar to the
methods presented in [35–38]. Also, the pre-
sented method is going to be attempted in the
Convolutional Neural Networks (CNN) train-
ing.

References
[1] J. Werbos. Beyond Regression: New Tools for

Prediction and Analysis in the Behavioral Sci-
ences. Harvard University, 1974.

[2] J. Gu, Z. Wang, J. Kuen, L. Ma, A. Shahroudy,
B. Shuai, T. Liu, X. Wang, G. Wang, J. Cai,
and T. Chen. Recent advances in convolu-
tional neural networks. Pattern Recognition,
77: 354–377, 2018.

[3] J. Bilski and A.I. Galushkin. A new propo-
sition of the activation function for significant
improvement of neural networks performance.
In Artificial Intelligence and Soft Computing,
volume 9602 of Lecture Notes in Computer Sci-
ence, pages 35–45. Springer-Verlag Berlin Hei-
delberg, 2016.

[4] N.A. Khan and A. Shaikh. A smart amalgama-
tion of spectral neural algorithm for nonlinear
lane-emden equations with simulated anneal-
ing. Journal of Artificial Intelligence and Soft
Computing Research, 7(3): 215–224, 2017.

[5] O. Chang, P. Constante, A. Gordon, and
M. Singana. A novel deep neural network that

304 Jarosław Bilski, Bartosz Kowalczyk, Andrzej Marjański, MichałGandor, Jacek Zurada

uses space-time features for tracking and rec-
ognizing a moving object. Journal of Artifi-
cial Intelligence and Soft Computing Research,
7(2): 125–136, 2017.

[6] A. Shewalkar, D. Nyavanandi, and S. A. Lud-
wig. Performance evaluation of deep neural
networks applied to speech recognition: RNN,
LSTM and GRU. Journal of Artificial In-
telligence and Soft Computing Research, 9(4):
235–245, 2019.

[7] J.B. Liu, J. Zhao, S. Wang, M. Javaid, and
J. Cao. On the topological properties of the cer-
tain neural networks. Journal of Artificial In-
telligence and Soft Computing Research, 8(4):
257–268, 2018.

[8] Y. Li, R. Cui, Z. Li, and D. Xu. Neural net-
work approximation based near-optimal mo-
tion planning with kinodynamic constraints us-
ing rrt. IEEE Transactions on Industrial Elec-
tronics, 65(11): 8718–8729, Nov 2018.

[9] R. Shirin. A neural network approach for re-
tailer risk assessment in the aftermarket indus-
try. Benchmarking: An International Journal,
26(5): 1631–1647, Jan 2019.

[10] M. Costam, D. Oliveira, S. Pinto, and
A. Tavares. Detecting driver’s fatigue, distrac-
tion and activity using a non-intrusive ai-based
monitoring system. Journal of Artificial In-
telligence and Soft Computing Research, 9(4):
247–266, 2019.

[11] A.K. Singh, S.K. Jha, and A.V. Muley. Can-
didates selection using artificial neural network
technique in a pharmaceutical industry. In Sid-
dhartha Bhattacharyya, Aboul Ella Hassanien,
Deepak Gupta, Ashish Khanna, and Indra-
jit Pan, editors, International Conference on
Innovative Computing and Communications,
pages 359–366, Singapore, 2019. Springer Sin-
gapore.

[12] A.Y. Hannun, P. Rajpurkar, M. Haghpanahi,
G.H. Tison, C. Bourn, M. P. Turakhia, and
A.Y. Ng. Cardiologist-level arrhythmia detec-
tion and classification in ambulatory electro-
cardiograms using a deep neural network. Na-
ture Medicine, 25(1): 65–69, 2019.

[13] D. Hagan and H. Hagan. Soft computing tools
for virtual drug discovery. Journal of Artifi-
cial Intelligence and Soft Computing Research,
8(3): 173–189, 2018.

[14] E. Angelini, G. di Tollo, and A. Roli. A neu-
ral network approach for credit risk evaluation.
The Quarterly Review of Economics and Fi-
nance, 48(4): 733–755, 2008.

[15] Ghosh and Reilly. Credit card fraud detection
with a neural-network. In 1994 Proceedings of
the Twenty-Seventh Hawaii International Con-
ference on System Sciences, volume 3, pages
621–630, Jan 1994.

[16] K.Y. Tam and M. Kiang. Predicting bank fail-
ures: A neural network approach. Applied
Artificial Intelligence, 4(4): 265–282, 1990.

[17] U.R. Acharya, S.L. Oh, Y. Hagiwara, J.H. Tan,
and H. Adeli. Deep convolutional neural net-
work for the automated detection and diagno-
sis of seizure using EEG signals. Computers
in Biology and Medicine, 100: 270–278, 2018.

[18] O. Abedinia, N. Amjady, and N. Ghadimi. So-
lar energy forecasting based on hybrid neu-
ral network and improved metaheuristic al-
gorithm. Computational Intelligence, 34(1):
241–260, 2018.

[19] H. Liu, X. Mi, and Y. Li. Wind speed fore-
casting method based on deep learning strategy
using empirical wavelet transform, long short
term memory neural network and Elman neu-
ral network. Energy Conversion and Manage-
ment, 156: 498–514, 2018.

[20] J.C.R. Whittington and R. Bogacz. Theories
of error back-propagation in the brain. Trends
in Cognitive Sciences, 23(3): 235–250, 2019.

[21] A.K. Singh, B. Kumar, S.K. Singh, S.P.
Ghrera, and A. Mohan. Multiple watermark-
ing technique for securing online social network
contents using back propagation neural net-
work. Future Generation Computer Systems,
86: 926–939, 2018.

[22] Z. Cao, N. Guo, M. Li, K. Yu, and K. Gao.
Back propagation neural network based sig-
nal acquisition for Brillouin distributed optical
fiber sensors. Opt. Express, 27(4): 4549–4561,
Feb 2019.

[23] M.T. Hagan and M.B. Menhaj. Training feed-
forward networks with the marquardt algo-
rithm. IEEE Transactions on Neuralnetworks,
5: 989–993, 1994.

[24] B.T. Polyak. Some methods of speeding up
the convergence of iteration methods. USSR
Computational Mathematics and Mathemati-
cal Physics, 4(5): 1–17, 1964.

[25] Yu. E. Nesterov. A method for solving the con-
vex programming problem with convergence
rate O(1/sqr(k)). In Soviet Mathematics Dok-
lady, number 27: 372-376, 1983.

A NOVEL FAST FEEDFORWARD NEURAL NETWORKS . . .

[26] I. Sutskever, J. Martens, G. Dahl, and G. Hin-
ton. On the importance of initialization and
momentum in deep learning. In Proceedings
of the 30th International Conference on In-
ternational Conference on Machine Learning -
Volume 28, ICML’13, pages III–1139–III–1147.
JMLR.org, 2013.

[27] S.E. Fahlman. An empirical study of learning
speed in back-propagation networks. Technical
report, 1988.

[28] M. Riedmiller and H. Braun. A direct adap-
tive method for faster backpropagation learn-
ing: the rprop algorithm. In IEEE Interna-
tional Conference on Neural Networks, pages
586–591 vol.1, March 1993.

[29] D.P. Kingma and J. Ba. Adam: A method for
stochastic optimization, 2014.

[30] J. Bilski and L. Rutkowski. A fast training algo-
rithm for neural networks. IEEE Transaction
on Circuits and Systems Part II, 45(6): 749–
753, 1998.

[31] W. Givens. Computation of plain unitary rota-
tions transforming a general matrix to triangu-
lar form. Journal of The Society for Industrial
and Applied Mathematics, 6: 26–50, 1958.

[32] C.L. Lawson and R.J. Hanson. Solving Least
Squares Problems. Prentice-Hall series in au-
tomatic computation. Prentice-Hall, 1974.

[33] A. Kiełbasiński and H. Schwetlick. Nu-
meryczna Algebra Liniowa: Wprowadzenie do

Obliczeń Zautomatyzowanych. Wydawnictwa
Naukowo-Techniczne, Warszawa, 1992.

[34] Louis Guttman. Enlargement Methods for
Computing the Inverse Matrix. The Annals
of Mathematical Statistics, 17(3): 336 – 343,
1946.

[35] J. Bilski and B.M. Wilamowski. Parallel learn-
ing of feedforward neural networks without er-
ror backpropagation. In Artificial Intelligence
and Soft Computing, pages 57–69, Cham, 2016.
Springer International Publishing.

[36] J. Bilski, B. Kowalczyk, and K. Grzanek.
The parallel modification to the Levenberg-
Marquardt algorithm. In Artificial Intelligence
and Soft Computing, volume 10841 of Lec-
ture Notes in Artificial Intelligence, pages 15–
24. Springer-Verlag Berlin Heidelberg, 2018.

[37] J. Bilski and B.M. Wilamowski. Parallel
Levenberg-Marquardt algorithm without error
backpropagation. Artificial Intelligence and
Soft Computing, Springer-Verlag Berlin Heidel-
berg, LNAI 10245: 25–39, 2017.

[38] J. Bilski and J. Smoląg. Fast conjugate gra-
dient algorithm for feedforward neural net-
works. In Leszek Rutkowski, Rafał Scherer,
Marcin Korytkowski, Witold Pedrycz, Ryszard
Tadeusiewicz, and Jacek M. Zurada, editors,
Artificial Intelligence and Soft Computing,
pages 27–38, Cham, 2020. Springer Interna-
tional Publishing.

Jarosław Bilski, Bartosz Kowalczyk, Andrzej Marjański, MichałGandor, Jacek Zurada

uses space-time features for tracking and rec-
ognizing a moving object. Journal of Artifi-
cial Intelligence and Soft Computing Research,
7(2): 125–136, 2017.

[6] A. Shewalkar, D. Nyavanandi, and S. A. Lud-
wig. Performance evaluation of deep neural
networks applied to speech recognition: RNN,
LSTM and GRU. Journal of Artificial In-
telligence and Soft Computing Research, 9(4):
235–245, 2019.

[7] J.B. Liu, J. Zhao, S. Wang, M. Javaid, and
J. Cao. On the topological properties of the cer-
tain neural networks. Journal of Artificial In-
telligence and Soft Computing Research, 8(4):
257–268, 2018.

[8] Y. Li, R. Cui, Z. Li, and D. Xu. Neural net-
work approximation based near-optimal mo-
tion planning with kinodynamic constraints us-
ing rrt. IEEE Transactions on Industrial Elec-
tronics, 65(11): 8718–8729, Nov 2018.

[9] R. Shirin. A neural network approach for re-
tailer risk assessment in the aftermarket indus-
try. Benchmarking: An International Journal,
26(5): 1631–1647, Jan 2019.

[10] M. Costam, D. Oliveira, S. Pinto, and
A. Tavares. Detecting driver’s fatigue, distrac-
tion and activity using a non-intrusive ai-based
monitoring system. Journal of Artificial In-
telligence and Soft Computing Research, 9(4):
247–266, 2019.

[11] A.K. Singh, S.K. Jha, and A.V. Muley. Can-
didates selection using artificial neural network
technique in a pharmaceutical industry. In Sid-
dhartha Bhattacharyya, Aboul Ella Hassanien,
Deepak Gupta, Ashish Khanna, and Indra-
jit Pan, editors, International Conference on
Innovative Computing and Communications,
pages 359–366, Singapore, 2019. Springer Sin-
gapore.

[12] A.Y. Hannun, P. Rajpurkar, M. Haghpanahi,
G.H. Tison, C. Bourn, M. P. Turakhia, and
A.Y. Ng. Cardiologist-level arrhythmia detec-
tion and classification in ambulatory electro-
cardiograms using a deep neural network. Na-
ture Medicine, 25(1): 65–69, 2019.

[13] D. Hagan and H. Hagan. Soft computing tools
for virtual drug discovery. Journal of Artifi-
cial Intelligence and Soft Computing Research,
8(3): 173–189, 2018.

[14] E. Angelini, G. di Tollo, and A. Roli. A neu-
ral network approach for credit risk evaluation.
The Quarterly Review of Economics and Fi-
nance, 48(4): 733–755, 2008.

[15] Ghosh and Reilly. Credit card fraud detection
with a neural-network. In 1994 Proceedings of
the Twenty-Seventh Hawaii International Con-
ference on System Sciences, volume 3, pages
621–630, Jan 1994.

[16] K.Y. Tam and M. Kiang. Predicting bank fail-
ures: A neural network approach. Applied
Artificial Intelligence, 4(4): 265–282, 1990.

[17] U.R. Acharya, S.L. Oh, Y. Hagiwara, J.H. Tan,
and H. Adeli. Deep convolutional neural net-
work for the automated detection and diagno-
sis of seizure using EEG signals. Computers
in Biology and Medicine, 100: 270–278, 2018.

[18] O. Abedinia, N. Amjady, and N. Ghadimi. So-
lar energy forecasting based on hybrid neu-
ral network and improved metaheuristic al-
gorithm. Computational Intelligence, 34(1):
241–260, 2018.

[19] H. Liu, X. Mi, and Y. Li. Wind speed fore-
casting method based on deep learning strategy
using empirical wavelet transform, long short
term memory neural network and Elman neu-
ral network. Energy Conversion and Manage-
ment, 156: 498–514, 2018.

[20] J.C.R. Whittington and R. Bogacz. Theories
of error back-propagation in the brain. Trends
in Cognitive Sciences, 23(3): 235–250, 2019.

[21] A.K. Singh, B. Kumar, S.K. Singh, S.P.
Ghrera, and A. Mohan. Multiple watermark-
ing technique for securing online social network
contents using back propagation neural net-
work. Future Generation Computer Systems,
86: 926–939, 2018.

[22] Z. Cao, N. Guo, M. Li, K. Yu, and K. Gao.
Back propagation neural network based sig-
nal acquisition for Brillouin distributed optical
fiber sensors. Opt. Express, 27(4): 4549–4561,
Feb 2019.

[23] M.T. Hagan and M.B. Menhaj. Training feed-
forward networks with the marquardt algo-
rithm. IEEE Transactions on Neuralnetworks,
5: 989–993, 1994.

[24] B.T. Polyak. Some methods of speeding up
the convergence of iteration methods. USSR
Computational Mathematics and Mathemati-
cal Physics, 4(5): 1–17, 1964.

[25] Yu. E. Nesterov. A method for solving the con-
vex programming problem with convergence
rate O(1/sqr(k)). In Soviet Mathematics Dok-
lady, number 27: 372-376, 1983.

Jarosław Bilski – received the M.Sc.
degree in electrical engineering from
Częstochowa University of Technolo-
gy in 1988 and Ph.D. degree (with hon-
ors) in computer science from AGH
Academy of Science and Technology,
Cracow, Poland in 1995. Now, he is
an Associate Professor in the Depart-
ment of Computational Intelligence at

Częstochowa University of Technology, Częstochowa, Po-
land. His research interests include neural networks, learning
algorithms, artificial intelligence and algorithm paralleliza-
tion. He has published about 70 technical papers in journals
and conference proceedings. Dr. Bilski is a member and
founder of the Polish Neural Network Society. He has co-
organized several Conferences on Artificial Intelligence and
Soft Computing.

Bartosz Kowalczyk – received the
M.Sc. degree in computer science
from Częstochowa University of Tech-
nology in 2015 and Ph.D. degree in
computer science from Częstochowa
University of Technology in 2020. As
of now he is working as an Associate
Professor in the Department of Com-
putational Intelligence at Częstochowa

University of Technology, Częstochowa, Poland. His scien-
tific interests include linear algebra especially orthogonal
transforms and their applications in learning algorithms for
neural networks. He has published several technical papers.
He has also co-organized a few Conferences on Artificial In-
telligence and Soft Computing.

306

Andrzej Marjański is a professor
at the University of Social Sciences
in Łódź, Poland. He received a Ph.D.
degree in management sciences from
Wroclaw University of Economics
and Business. His research interest in-
cludes the issues of family enterprises,
development strategies, entrepreneur-
ship, crisis management, and applica-

tions of artificial intelligence methods in management. He
has authored over 100 publications.

Michał Gandor received his M.Sc.
degree in computer science at the
Cracow University of Technology,
Kraków, Poland, in 2019. Since then,
he has been working as a research and
teaching assistant at the Department of
Computer Science, Faculty of Comput-
er Science and Telecommunications of
the Cracow University of Technology.

His main research interest focuses mainly on machine learn-
ing methods and optimization algorithms, especially in the
field of medicine.

Jacek M. Zurada, Ph.D., (Life Fellow
IEEE’14, INNS Fellow) has received
his degrees from Gdansk University of
Technology, Poland. He now serves as
a Professor of Electrical and Computer
Engineering at the University of Lou-
isville, Kentucky. He authored or co-
authored several books and over 420
papers in computational intelligence,

neural networks, machine learning, and rule extraction,
and delivered over 100 invited talks in Mexico, Chile, The
Netherlands, China, India, Singapore, Turkey, Hong Kong,
Hungary, Germany, Malaysia, Poland, and Italy. His work has
been cited over 14,000 times (Google Scholar).

In 2014 he served as IEEE V-President, Technical Activi-
ties (TAB Chair). He also chaired the IEEE TAB Strategic
Planning Committee (2016), IEEE TAB Periodicals Com-
mittee (2010-11), and TAB Periodicals Review and Advisory
Committee (2012-13), and was the Editor-in-Chief of the
IEEE Transactions on Neural Networks (1997-03), Associ-
ate Editor of the IEEE Transactions on Circuits and Systems,
Neural Networks and was member of the Editorial Board of
The Proceedings of the IEEE. In 2004-05, he served as Presi-
dent of the IEEE Computational Intelligence Society. He is
a Distinguished Lecturer for IEEE Systems, Man and Cyber-
netics Society.

Professor Jacek Zurada is an Associate Editor of Neu-
rocomputing, and of several international journals. He is
a member of the Polish Academy of Sciences. He has been
awarded numerous distinctions, including the 2013 Joe Desch
Innovation Award, 2015 UofL Distinguished Service Award,
and five honorary professorships. He has been a Board Mem-
ber of IEEE, IEEE CIS and IJCNN.

Jarosław Bilski, Bartosz Kowalczyk, Andrzej Marjański, MichałGandor, Jacek Zurada

uses space-time features for tracking and rec-
ognizing a moving object. Journal of Artifi-
cial Intelligence and Soft Computing Research,
7(2): 125–136, 2017.

[6] A. Shewalkar, D. Nyavanandi, and S. A. Lud-
wig. Performance evaluation of deep neural
networks applied to speech recognition: RNN,
LSTM and GRU. Journal of Artificial In-
telligence and Soft Computing Research, 9(4):
235–245, 2019.

[7] J.B. Liu, J. Zhao, S. Wang, M. Javaid, and
J. Cao. On the topological properties of the cer-
tain neural networks. Journal of Artificial In-
telligence and Soft Computing Research, 8(4):
257–268, 2018.

[8] Y. Li, R. Cui, Z. Li, and D. Xu. Neural net-
work approximation based near-optimal mo-
tion planning with kinodynamic constraints us-
ing rrt. IEEE Transactions on Industrial Elec-
tronics, 65(11): 8718–8729, Nov 2018.

[9] R. Shirin. A neural network approach for re-
tailer risk assessment in the aftermarket indus-
try. Benchmarking: An International Journal,
26(5): 1631–1647, Jan 2019.

[10] M. Costam, D. Oliveira, S. Pinto, and
A. Tavares. Detecting driver’s fatigue, distrac-
tion and activity using a non-intrusive ai-based
monitoring system. Journal of Artificial In-
telligence and Soft Computing Research, 9(4):
247–266, 2019.

[11] A.K. Singh, S.K. Jha, and A.V. Muley. Can-
didates selection using artificial neural network
technique in a pharmaceutical industry. In Sid-
dhartha Bhattacharyya, Aboul Ella Hassanien,
Deepak Gupta, Ashish Khanna, and Indra-
jit Pan, editors, International Conference on
Innovative Computing and Communications,
pages 359–366, Singapore, 2019. Springer Sin-
gapore.

[12] A.Y. Hannun, P. Rajpurkar, M. Haghpanahi,
G.H. Tison, C. Bourn, M. P. Turakhia, and
A.Y. Ng. Cardiologist-level arrhythmia detec-
tion and classification in ambulatory electro-
cardiograms using a deep neural network. Na-
ture Medicine, 25(1): 65–69, 2019.

[13] D. Hagan and H. Hagan. Soft computing tools
for virtual drug discovery. Journal of Artifi-
cial Intelligence and Soft Computing Research,
8(3): 173–189, 2018.

[14] E. Angelini, G. di Tollo, and A. Roli. A neu-
ral network approach for credit risk evaluation.
The Quarterly Review of Economics and Fi-
nance, 48(4): 733–755, 2008.

[15] Ghosh and Reilly. Credit card fraud detection
with a neural-network. In 1994 Proceedings of
the Twenty-Seventh Hawaii International Con-
ference on System Sciences, volume 3, pages
621–630, Jan 1994.

[16] K.Y. Tam and M. Kiang. Predicting bank fail-
ures: A neural network approach. Applied
Artificial Intelligence, 4(4): 265–282, 1990.

[17] U.R. Acharya, S.L. Oh, Y. Hagiwara, J.H. Tan,
and H. Adeli. Deep convolutional neural net-
work for the automated detection and diagno-
sis of seizure using EEG signals. Computers
in Biology and Medicine, 100: 270–278, 2018.

[18] O. Abedinia, N. Amjady, and N. Ghadimi. So-
lar energy forecasting based on hybrid neu-
ral network and improved metaheuristic al-
gorithm. Computational Intelligence, 34(1):
241–260, 2018.

[19] H. Liu, X. Mi, and Y. Li. Wind speed fore-
casting method based on deep learning strategy
using empirical wavelet transform, long short
term memory neural network and Elman neu-
ral network. Energy Conversion and Manage-
ment, 156: 498–514, 2018.

[20] J.C.R. Whittington and R. Bogacz. Theories
of error back-propagation in the brain. Trends
in Cognitive Sciences, 23(3): 235–250, 2019.

[21] A.K. Singh, B. Kumar, S.K. Singh, S.P.
Ghrera, and A. Mohan. Multiple watermark-
ing technique for securing online social network
contents using back propagation neural net-
work. Future Generation Computer Systems,
86: 926–939, 2018.

[22] Z. Cao, N. Guo, M. Li, K. Yu, and K. Gao.
Back propagation neural network based sig-
nal acquisition for Brillouin distributed optical
fiber sensors. Opt. Express, 27(4): 4549–4561,
Feb 2019.

[23] M.T. Hagan and M.B. Menhaj. Training feed-
forward networks with the marquardt algo-
rithm. IEEE Transactions on Neuralnetworks,
5: 989–993, 1994.

[24] B.T. Polyak. Some methods of speeding up
the convergence of iteration methods. USSR
Computational Mathematics and Mathemati-
cal Physics, 4(5): 1–17, 1964.

[25] Yu. E. Nesterov. A method for solving the con-
vex programming problem with convergence
rate O(1/sqr(k)). In Soviet Mathematics Dok-
lady, number 27: 372-376, 1983.

