PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Open burning and open detonation of explosives. Prediction of pollutant emissions

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents a complex analysis of the presence of various pollutants (CO2, CO, NO, NO2, CH4, TNMH, C6H6) in the vicinity of sites intended for open burning and open detonation of explosives. Previously obtained data (measured field data on a representative sample) regarding the emission factors of pollutants originating from different types of explosives have been used. To predict the atmospheric dispersion of reactive agents, the ADORA and ALOHA models were used. Comparative analysis was performed with computational and experimental data on the emission of detonation products using regression analysis of the obtained emission coefficients. The overall results show satisfactory values of correlation coefficients. The prediction power of used methods increased as follows: ADORA (the smallest error), ALOHA E/A (0.43) and ALOHA E/A 0.67.
Rocznik
Strony
23--34
Opis fizyczny
Bibliogr. 17 poz., rys., tab.
Twórcy
  • Ministry of Defense, Birčaninova 5, 11000 Belgrade, Serbia
  • University of Belgrade, Technical Faculty Bor, Vojske Jugoslavije 12, 19210 Bor, Serbia
  • University of Kragujevac, Faculty of Technical Sciences Čačak, Svetog Save 65, 32000 Čačak, Serbia
Bibliografia
  • [1] National Academies of Sciences, Engineering and Medicine, Alternatives for the Demilitarization of Conventional Munitions, The National Academies Press, Washington 2019. DOI: 10.17226/25140.
  • [2] SALW ammunition destruction – environmental releases from open burning (OB) and open detonation (OD) events, SEESAC, Belgrade 2004.
  • [3] DJEBBRI N., ROUAINIA M., Prediction of industrial pollution by radial basis function networks, Environ.Prot. Eng., 2018, 44 (3) 153–164. DOI: 10.37190/epe180311.
  • [4] BLAGOJEVIĆ M., PAPIĆ M., VUJIČIĆ M., ŠUĆUROVIĆ M., Artificial neural network model for predicting air pollution. Case study of the Moravica district, Serbia, Environ. Prot. Eng., 2018, 44 (1) 129–139. DOI: 10.37190/epe180110.
  • [5] MOUSSA N.A., MASONJONES M.C., ZHANG X.J., Accurate prediction of emission factors by ADORA,Global Demilitarization Symposium and Exhibition in Coeur D’Alene, Idaho, May 11–14, 1998.
  • [6] MOUSSA N.A., DEVERAKONDA V.V., Prediction of toxic emissions from chemical fire and explosion. Fire safety science, Proc. 11th International Symposium, 2014, 1457–1468. DOI: 10.3801/IAFSS. FSS.11-1457.
  • [7] ALOHA – the atmospheric dispersion model in CAMEO software suite developed jointly by the National Oceanic and Atmospheric Administration (NOAA) and the U.S. Department of Commerce, Seattle, WA, 2013.
  • [8] WATTS R.J., Hazardous wastes, sources, pathways, receptors, Wiley, New York 1998. DOI: 10.1002/ep.670200405 .
  • [9] MUTHURAJAN H., HOW-GHEE A., Software development for the detonation product analysis of high energetic materials. Part I, Cent. Eur. J. Energ. Mat., 2008, 5 (3–4), 19–35.
  • [10] ABDUL-KARIM N., BLACKMAN C.S., GILL P.P., KARU K., The spatial distribution patterns of condensed phase post-blast explosive residues formed during detonation, J. Hazard. Mater., 2016, 316, 204–213. DOI: 10.1016/j.jhazmat.2016.04.081.
  • [11] MITCHELL W.J., SUGGS J.C., Emission factors for the disposal of energetic materials by open burning and open detonation (OB/OD), U.S. Environmental Protection Agency, Washington, DC, EPA/600/R-98/103 (NTIS PB99-102105), 1998.
  • [12] AURELL J., GULLETT B.K., TABOR D., WILLIAMS R.K., MITCHELL W., KEMME M.R., Aerostat-based sampling of emissions from open burning and open detonation of military ordnance, J. Hazard. Mater., 2015, 284, 108–120. DOI: 10.1016/j.jhazmat.2014.10.029.
  • [13] US EPA, Air Emission Measurement Center (EMC), Method 3A. Determination of oxygen and carbon dioxide concentrations in emissions from stationary sources (instrumental analyzer procedure), 2017.
  • [14] JOHNSON M., U.S. development of methodology and technology for identifying and quantifying emission products from open burning and open detonation thermal treatment methods. Field Test Series A, B, and C, Vol. 1, Test Summary. Final Report AD-A250735, Rock Island, IL, Maintenance Management Division, Demilitarization and Technology Branch, 1992.
  • [15] YUEN W., JOHNSEN D.L., KOLOUTSOU-VAKAKIS S., ROOD M.J., KIM B.J., KEMME M.R., Open burning and open detonation PM10 mass emission factor measurements with optical remote sensing, J. Air. Waste. Manage., 2014, 64 (2), 227–234. DOI: 10.1080/10962247.2013.851045.
  • [16] AURELL J., GULLETT B.K., PRESSLEY C., TABOR D.G., GRIBBLE R.D., Aerostat-lofted instrument and sampling method for determination of emissions from open area sources, Chemosphere, 2011, 85, 806–811. DOI: 10.1016/j.chemosphere.2011.06.075.
  • [17] US ARL, Development of Methodology for Evaluating Emissions from Metal-Containing Explosives and Propellants, Report No. ARL-TR-8456, The U.S. Army Research Laboratory, 2018.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1140c06e-97a6-4d49-9e6c-da01c568d6d4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.