Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This study proposes a novel methodology for classifying bearing aging stages in induction motors by leveraging a compact and effective set of spectral features. Two advanced neural network classifiers - a Pattern Recognition Neural Network (PRNN) trained with the Levenberg-Marquardt algorithm and a Feedforward Neural Network (FFNN) optimized with the Limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) algorithm - were compared. Experimental results demonstrate the FFNN's superior accuracy and robustness in classifying eight distinct aging grades. The primary innovation of this study lies in the use of five key spectral features extracted from the critical 2-4 kHz frequency band. This feature set significantly reduces dimensionality while preserving the descriptive features needed to characterize the aging process, enabling efficient and precise diagnostics. By employing this approach, the methodology not only enhances computational efficiency but also facilitates seamless integration into real-world fault detection and maintenance systems. Beyond fault detection, this work establishes a foundation for accurately determining bearing aging stages, creating opportunities to estimate bearing lifespan more precisely. By providing actionable insights into the aging process, it enables proactive maintenance strategies that reduce downtime and operational costs while enhancing machinery reliability. Future applications may extend this methodology to broader predictive maintenance frameworks and condition assessment tasks across various industrial domains.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
art. no. 2025212
Opis fizyczny
Bibliogr. 47 poz., rys., tab.
Twórcy
autor
- Istanbul Technical University, Electrical and Electronics Fac., Electrical Eng. 34469, Maslak/Istanbul, Turkey
autor
- Istanbul Technical University, Electrical and Electronics Fac., Electrical Eng. 34469, Maslak/Istanbul, Turkey
Bibliografia
- 1. Han Y, Song X, Shi J, Li K. KPCA-WPHM-SCNsbased remaining useful life prediction method for motor rolling bearings. Trans Inst Meas Control 2024;46:973-91. https://doi.org/10.1177/01423312231191569.
- 2. Irgat E, Çinar E, Ünsal A. The detection of bearing faults for induction motors by using vibration signals and machine learning. 2021 IEEE 13th Int. Symp. Diagn. Electr. Mach. Power Electron. Drives SDEMPED. 2021;1:447-53. https://doi.org/10.1109/SDEMPED51010.2021.96055 36.
- 3. Faiz J, Ebrahimi B, Sharifian M. Different faults and their diagnosis techniques in three-phase squirrel-cage induction motors - A review. Electromagnetics. 2006;26:543-69. https://doi.org/10.1080/02726340600873003.
- 4. Wang R, Jin J, Hu X, Chen J. Bearing performance degradation assessment based on topological representation and hidden Markov model. J Vib Control. 2021;27:1617-28. https://doi.org/10.1177/1077546320946633.
- 5. Lakikza A, Cheghib H, Kahoul N. Diagnosis of bearing faults in wind turbine systems using vibrational signal processing and machine learning. Diagnostyka. 2024;25:1-8. https://doi.org/10.29354/diag/191393.
- 6. Bouaouiche K, Menasria Y, Khalfa D. Detection of defects in a bearing by analysis of vibration signals. Diagnostyka. 2023;24:1-7. https://doi.org/10.29354/diag/162230.
- 7. Qiao Z, Zhang C, Zhang C, Ma X, Zhu R, Lai Z, et al. Stochastic resonance array for designing noiseboosted filter banks to enhance weak multi-harmonic fault characteristics of machinery. Appl Acoust. 2025;236:110710. https://doi.org/10.1016/j.apacoust.2025.110710.
- 8. Kaya Y, Kuncan F, Ertunç H. A new automatic bearing fault size diagnosis using time-frequency images of CWT and deep transfer learning methods. Turk J Electr Eng Comput Sci. 2022;30:1851-67. https://doi.org/10.55730/1300-0632.3909.
- 9. Deák DK, Kocsis KI. Complex Morlet wavelet design with global parameter optimization for diagnosis of industrial manufacturing faults of tapered roller bearing in noisycondition n.d. https://doi.org/10.29354/diag/109223.
- 10. Camci F, Medjaher K, Zerhouni N, Nectoux P. feature evaluation for effective bearing prognostics. Qual Reliab Eng Int. 2013;29:477-86. https://doi.org/10.1002/qre.1396.
- 11. Shukla S, Yadav RN, Sharma J, Khare S. Analysis of statistical features for fault detection in ball bearing. 2015 IEEE Int. Conf. Comput. Intell. Comput. Res. ICCIC. 2015:1-7. https://doi.org/10.1109/ICCIC.2015.7435755.
- 12. Delgado Prieto M, Cirrincione, García Espinosa A, Ortega Redondo JA, Henao H. Accurate bearing faults classification based on statistical-time features. Curvilinear Component Analysis and Neural Networks. 2012. https://doi.org/10.1109/IECON.2012.6389596.
- 13. Magar R, Ghule L, Li J, Zhao Y, Farimani AB. FaultNet: A deep convolutional neural network for bearing fault classification. IEEE Access. 2021;9:25189-99. https://doi.org/10.1109/ACCESS.2021.3056944.
- 14. Pandhare V, Singh J, Lee J. Convolutional neural network based rolling-element bearing fault diagnosis for naturally occurring and progressing defects using time-frequency domain features. 2019 Progn. Syst. Health Manag. Conf. PHM-Paris. 2019:320-326. https://doi.org/10.1109/PHM-Paris.2019.00061.
- 15. Moosavian A, Jafari SM, Khazaee M, Ahmadi H. A Comparison between ANN, SVM and Least squares SVM: Application in multi-fault diagnosis of rolling element bearing. Int J Acoust Vib. 2018;23.
- 16. Janssens O, Slavkovikj V, Vervisch B, Stockman K, Loccufier M, Verstockt S, et al. Convolutional neural network based fault detection for rotating machinery. J SOUND Vib. 2016;377:331-45. https://doi.org/10.1016/j.jsv.2016.05.027.
- 17. Castejón C, Lara O, García-Prada JC. Automated diagnosis of rolling bearings using MRA and neural networks. Mech Syst Signal Process. 2010;24:289–99. https://doi.org/10.1016/j.ymssp.2009.06.004.
- 18. Kumar HS, Pai PS, Sriram NS, Vijay GS. ANN based evaluation of performance of wavelet transform for condition monitoring of rolling element bearing. Procedia Eng. 2013;64:805-14. https://doi.org/10.1016/j.proeng.2013.09.156.
- 19. Han T, Jiang D, Zhao Q, Wang L, Yin K. Comparison of random forest, artificial neural networks and support vector machine for intelligent diagnosis of rotating machinery. Trans Inst Meas Control. 2018;40:2681-93. https://doi.org/10.1177/0142331217708242.
- 20. Rayjade G, Bhagure A, Kushare PB, Bhandare R, Matsagar V, Chaudhari A. Performance evaluation of machine learning algorithms and impact of activation functions in artificial neural network classifier for bearing fault diagnosis. J Vib Control. 2024:10775463241235778. https://doi.org/10.1177/10775463241235778.
- 21. Gullu Boztas. Comparison of acoustic Signac-based fault detection of mechanical faults in induction motors using image classification models n.d.;45. https://doi.org/10.1177/01423312231171664.
- 22. Zhang, Shen, Shibo Zhang, Bingnan Wang, Thomas G. Habetler. Deep learning algorithms for bearing fault diagnostics - A comprehensive review. IEEE Access. 2020;8:29857-81.
- 23. Dong Y, Yang W, Zhang C, Zhang Y, Xu D, Pan T. Concurrent bearing faults diagnosis with CNN-based object detection-An evaluation. Trans Inst Meas Control. 2024:01423312241279701. https://doi.org/10.1177/01423312241279701.
- 24. Li Z, Wang Y, Wang K. A deep learning driven method for fault classification and degradation assessment in mechanical equipment. Comput Ind. 2019;104:1–10. https://doi.org/10.1016/j.compind.2018.07.002.
- 25. Hoang D-T, Kang H-J. A survey on Deep Learning based bearing fault diagnosis. Neurocomputing. 2019;335:327-35. https://doi.org/10.1016/j.neucom.2018.06.078.
- 26. Soualhi A, Razik H, Clerc G, Doan DD. Prognosis of bearing failures using hidden Markov models and the adaptive neuro-fuzzy inference system. IEEE Trans Ind Electron. 2014;61:2864-74. https://doi.org/10.1109/TIE.2013.2274415.
- 27. Zarei J, Tajeddini MA, Karimi HR. Vibration analysis for bearing fault detection and classification using an intelligent filter. Mechatronics. 2014;24:151-7. https://doi.org/10.1016/j.mechatronics.2014.01.003.
- 28. Zhang R, Peng Z, Wu L, Yao B, Guan Y. Fault diagnosis from raw sensor data using deep neural networks considering temporal coherence. Sensors. 2017;17:549. https://doi.org/10.3390/s17030549.
- 29. Zhang J, Sun Y, Guo L, Gao H, Hong X, Song H. A new bearing fault diagnosis method based on modified convolutional neural networks. Chin J Aeronaut. 2020;33:439-47. https://doi.org/10.1016/j.cja.2019.07.011.
- 30. Sobie C, Freitas C, Nicolai M. Simulation-driven machine learning: Bearing fault classification. Mech Syst Signal Process. 2018;99:403-19. https://doi.org/10.1016/j.ymssp.2017.06.025.
- 31. Zhu K, Zhou S, Chen L, Gu B, Hu X. Rolling bearing fault diagnosis under variable working conditions using deep convolutional fuzzy system. Trans Inst Meas Control. 2024;46:845-57. https://doi.org/10.1177/01423312231184932.
- 32. Eren L. Bearing fault detection by one-dimensional convolutional neural networks. Math Probl Eng. 2017;2017:8617315. https://doi.org/10.1155/2017/8617315.
- 33. Seker S, Ayaz E. Feature extraction related to bearing damage in electric motors by wavelet analysis. J Frankl Inst. 2003;340:125-34. https://doi.org/10.1016/S0016-0032(03)00015-2.
- 34. Ayaz E, Ozturk A, Seker S. Continuous wavelet transform for bearing damage detection in electric motors. MELECON 2006 - 2006 IEEE Mediterr. Electrotech. Conf. 2006:1130-3. https://doi.org/10.1109/MELCON.2006.1653299.
- 35. Bayram D, Şeker S. Wavelet based Neuro-Detector for low frequencies of vibration signals in electric motors. Appl Soft Comput J. 2013;13:2683-91. https://doi.org/10.1016/j.asoc.2012.11.019.
- 36. Jin Z, Han Q, Zhang K, Zhang Y. An intelligent fault diagnosis method of rolling bearings based on Welch power spectrum transformation with radial basis function neural network. J Vib Control. 2020;26:629 https://doi.org/10.1177/1077546319889859.
- 37. Huo Z, Zhang Y, Francq P, Shu L, Huang J. Incipient fault diagnosis of roller bearing using optimized wavelet transform based multi-speed vibration signatures. IEEE Access 2017;5:19442-56. https://doi.org/10.1109/ACCESS.2017.2661967.
- 38. Ben Ali J, Fnaiech N, Saidi L, Chebel-Morello B, Fnaiech F. Application of empirical mode decomposition and artificial neural network for automatic bearing fault diagnosis based on vibration signals. Appl Acoust. 2015;89:16-27. https://doi.org/10.1016/j.apacoust.2014.08.016.
- 39. Porteiro J, Collazo J, Patiño D, Míguez JL. Diesel engine condition monitoring using a multi-net neural network system with nonintrusive sensors. Appl Therm Eng. 2011;31:4097-105. https://doi.org/10.1016/j.applthermaleng.2011.08.020.
- 40. Hagan MT, Menhaj MB. Training feedforward networks with the Marquardt algorithm. IEEE Trans Neural Netw. 1994;5:989-93. https://doi.org/10.1109/72.329697.
- 41. Meriem B, Leila M, Salah S. Time - frequency method and artificial neural network classifier for induction motor drive system defects classification n.d. https://doi.org/10.29354/diag/181192.
- 42. Liu DC, Nocedal J. On the limited memory BFGS method for large scale optimization. Math Program 1989;45:503-28. https://doi.org/10.1007/BF01589116.
- 43. Ghorban Zadeh Badeli M, Bayram Kara D. Back propagation neural network based classification for electric motors. Mach. Learn. ENERGY Ind. Appl. Technol. Eng. Sci., Ankara, Turkey: Iksad Publishing House; n.d., 51-80.
- 44. Ghorban Zadeh Badeli M. Neuro classifiers for condition and bearing health assessment of an electric motor. master degree. Istanbul Technical University. 2022.
- 45. Bayram D. Condition monitoring and fault detection for induction motors by spectral trending and stationary wavelet analysis. Istanbul Technical University. 2015.
- 46. Matsushita O, Tanaka M, Kobayashi M, Keogh P, Kanki H. Vibration of rolling element bearings. In: Matsushita O, Tanaka M, Kobayashi M, Keogh P, Kanki H, editors. Vib. Rotating Mach. Vol. 2 Adv. Rotordynamics Appl. Anal. Troubl. Diagn., Tokyo: Springer Japan. 2019:87-114. https://doi.org/10.1007/978-4-431-55453-0_5.
- 47. Wowk V. Machinery VIBRATION: Measurement and analysis. McGraw-Hill; 1991.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-11384835-1d9f-4503-83d9-651aef1304c6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.