PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

An assessment of applicability of the two-dimensional wavelet transform to assess the minimum chip thickness determination accuracy

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The objective of the study was to assess the potential use of optical measuring instruments to determine the minimum chip thickness in face milling. Images of scanned surfaces were analyzed using mother wavelets. Filtration of optical signals helped identify the characteristic zones observed on the workpiece surface at the beginning of the cutting process. The measurement data were analyzed statistically. The results were then used to estimate how accurate each measuring system was to determine the minimum uncut chip thickness. Also, experimental verification was carried out for each mother wavelet to assess their suitability for analyzing surface images.
Rocznik
Strony
659--672
Opis fizyczny
Bibliogr. 33 poz., fot., rys., tab., wykr., wzory
Twórcy
  • Kielce University of Technology, Faculty of Mechatronics and Mechanical Engineering, al. 1000-lecia P. P. 7, 25-314 Kielce, Poland
  • Kielce University of Technology, Faculty of Mechatronics and Mechanical Engineering, al. 1000-lecia P. P. 7, 25-314 Kielce, Poland
  • Kielce University of Technology, Faculty of Mechatronics and Mechanical Engineering, al. 1000-lecia P. P. 7, 25-314 Kielce, Poland
Bibliografia
  • [1] Adamczak, S. & Zmarzły, P. (2019). Research of the influence of the 2D and 3D surface roughness parameters of bearing raceways on the vibration level. Journal of Physics: Conference Series, 1183, 012001. https://doi.org/10.1088/1742-6596/1183/1/012001
  • [2] Lee, K., & Dornfeld, D. A. (2005). Micro-burr formation and minimization through process control. Precision Engineering, 29(2), 246-252. https://doi.org/10.1016/j.precisioneng.2004.09.002
  • [3] Sedriks, A. J., & Mulhearn, T. O. (1964). The effect of work-hardening on the mechanics of cutting in simulated abrasive processes. Wear, 7(5), 451-459. https://doi.org/10.1016/0043-1648(64)90137-1
  • [4] Kita, Y., Ido, M., & Hata, S. (1978). The mechanism of metal removal by an abrasive tool. Wear, 47(1), 185-193. https://doi.org/10.1016/0043-1648(78)90214-4
  • [5] L’vov, N. P. (1969). Determining the minimum possible chip thickness. Machines & Tooling, 4, 40-45.
  • [6] Basuray, P. K., Misra, B. K., & Lal, G. K. (1977). Transition from ploughing to cutting during machining with blunt tools. Wear, 43(3), 341-349. https://doi.org/10.1016/0043-1648(77)90130-2
  • [7] Yuan, Z. J., Zhou, M., & Dong, S. (1996). Effect of diamond tool sharpness on minimum cutting thickness and cutting surface integrity in ultraprecision machining. Journal of Materials Processing Technology, 62(4), 327-330. https://doi.org/10.1016/S0924-0136(96)02429-6
  • [8] Ducobu, F., Filippi, E., & Rivière, L. (2009). Modélisation de l’influence de la profondeur de coupe en micro-coupe orthogonale.19 Congrès Francais de Mécanique Marseille. France. http://hdl.handle.net/2042/37240 (in French).
  • [9] Kawalec, M. (1980). Fizyczne i technologiczne zagadnienia przy obróbce z małymi grubościami warstwy skrawanej. [Rozprawy nr 106. Wydawnictwo Politechniki Poznańskiej]. (in Polish)
  • [10] Grzesik, W. (2010). Podstawy skrawania materiałów konstrukcyjnych. Wydawnictwa Naukowe PWN. (in Polish)
  • [11] Blake, P. N. & Scattergood, R. O. (1990). Ductile-regime machining of germanium and silicon. Journalof the American ceramic society, 73(4), 949-957. https://doi.org/10.1111/j.1151-2916.1990.tb05142.x
  • [12] Pawlus, P., Reizer, R., & Wieczorowski, M. (2018). Comparison of results of surface texture measurement obtained with stylus methods and optical methods. Metrology and Measurement Systems, 25(3), 589-602. https://doi.org/10.24425/123894
  • [13] Podulka, P. (2020). Comparisons of envelope morphological filtering methods and various regular algorithms for surface texture analysis. Metrology and Measurement Systems, 27(2), 243-263. https://doi.org/10.24425/mms.2020.132772
  • [14] Gogolewski, D. (2020). Influence of the edge effect on the wavelet analysis process, Measurement,152, 107314. https://doi.org/10.1016/j.measurement.2019.107314
  • [15] Josso, B., Burton, D. R., & Lalor, M. J. (2002). Frequency normalised wavelet transform for surface roughness analysis and characterisation. Wear, 252(5-6), 491-500. https://doi.org/10.1016/S0043-1648(02)00006-6
  • [16] Brown, C. A., Hansen, H. N., Jiang, X., Blateyron, F., Berglund, J., Senin, N., Bartkowiak, T., Dixon, B., Le Goic, G., Quinsat, Y., Stemp, W. J., Thompson, M. K., Ungar, P. S., & Zahouani, H. (2018). Multiscale analyses and characterizations of surface topographies. CIRP Annals - Manufacturing Technology, 67(2), 839-862. https://doi.org/10.1016/j.cirp.2018.06.001
  • [17] Bruzzone, A. A. G., Montanaro, J. S., Ferrando, A., & Lonardo, P. M. (2004). Wavelet analysis for surface characterization: an experimental assessment. CIRP Annals - Manufacturing Technology, 53(1), 479-482. https://doi.org/10.1016/S0007-8506(07)60744-6
  • [18] Adamczak, S. & Makieła, W. (2011). Analyzing variations in roundness profile parameters during the wavelet decomposition process using the Matlab environment. Metrology and Measurement Systems, 18(1), 25-33. https://doi.org/10.2478/v10178-011-0003-6
  • [19] LeGoïc, G., Bigerelle, M., Samper, S., Favrelière, H., & Pillet, M. (2016). Multiscale roughness analysis of engineering surfaces: A comparison of methods for the investigation of functional correlations. Mechanical Systems and Signal Processing, 66-67, 437-457. https://doi.org/10.1016/j.ymssp.2015.05.029
  • [20] Zmarzły, P., Kozior, T., & Gogolewski, D. (2019). Dimensional and shape accuracy of foundry patterns fabricated through photo-curing. Tehnički vjesnik - Technical Gazette, 26(6), 1576-1584. https://doi.org/10.17559/TV-20181109115954
  • [21] Blateyron, F. (2014). Good practices for the use of areal filters, Proceedings of 3rd Seminar on surface metrology of the Americas, USA. https://doi.org/10.13140/2.1.1007.9361
  • [22] Gogolewski, D. & Makieła, W. (2019). Application of wavelet transform to determine surface texture constituents. In: Durakbasa N., & Gencyilmaz M. (Eds). Proceedings of the International Symposium for Production Research 2018 (pp. 224-231). Springer. https://doi.org/10.1007/978-3-319-92267-6_19
  • [23] Jiang, X. Q. & Blunt, L. (2001). Morphological assessment of in vivo wear of orthopaedic implants using multiscalar wavelets. Wear, 250(1-12), 217-221. https://doi.org/10.1016/S0043-1648(01)00644-5
  • [24] Dutta, S., Pal, S. K., & Sen, R. (2016). Progressive tool flank wear monitoring by applying discrete wavelet transform on turned surface images. Measurement, 77, 388-401. https://doi.org/10.1016/j.measurement.2015.09.028
  • [25] Zahouani, H., Mezghani, S., Vargiolu, R., & Dursapt, M. (2008). Identification of manufacturing signature by 2D wavelet decomposition. Wear, 264(5-6), 480-485. https://doi.org/10.1016/j.wear.2006.08.047
  • [26] Deltombe, R., Bigerelle, M., & Jourani, A. (2015). Analysis of the effects of different machining processes on sealing using multiscale topography. Surface Topography: Metrology and Properties, 4(1). https://doi.org/10.1088/2051-672X/4/1/015003
  • [27] Jiang, X., Scott, P., & Whitehouse, D. (2008). Wavelets and their Applications for Surface Metrology. CIRP Annals - Manufacturing Technology, 57(1), 555-558. https://doi.org/10.1016/j.cirp.2008.03.110
  • [28] Abdul-Rahman, H. S., Jiang, X. J., & Scott, P. J. (2013). Freeform surface filtering using the lifting wavelet transform. Precision Engineering, 37(1), 187-202. https://doi.org/10.1016/j.precisioneng.2012.08.002
  • [29] Stępień, K. & Makieła, W. (2013). An analysis of deviations of cylindrical surfaces with the use of wavelet transform. Metrology and Measurement Systems, 20(1), 139-150. https://doi.org/10.2478/mms-2013-0013
  • [30] Zhang, Z., Zhang, Y., & Zhu, Y. (2010). A new approach to analysis of surface topography. Precision Engineering, 34(4), 807-810. https://doi.org/10.1016/j.precisioneng.2010.05.002
  • [31] Stępień, K. (2014). Research on a surface texture analysis by digital signal processing methods. Tehnički vjesnik - Technical Gazette, 21(3), 485-493.
  • [32] Gogolewski, D. (2018). The simulation method for the identification the surface irregularities. 24th International Conference Engineering Mechanics, Czech Republic, 253-256. https://doi.org/10.21495/91-8-253
  • [33] Adamczak, S., Janusiewicz, A., Makieła, W., & Stępień, K. (2011). Statistical validation of the method for measuring radius variations of components on the machine tool. Metrology and Measurement Systems, 17(1), 35-46. https://doi.org/10.2478/v10178-011-0004-5
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1136af09-ba8a-4d9b-9b43-1d7ff65f1922
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.