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Abstract: The essay has a twofold objective: primarily, to
present an application of voting theory as a possible evaluation
method, and concurrently, to offer a pedagogic framework, based
on that very application. Evaluation and certain notions of prefer-
ence and value have common semantic roots. By equating preference
and choice, we end up amidst social choice (SC) theory and voting
methods, also manageable as joint decisions in multiple-criteria de-
cision making (MCDM). With the aid of the Saari triangle some
essential differences of pairwise and positional voting rules for up to
three alternatives can be depicted. A voting or decision rule does not
necessarily follow the true preferences of the actors, but may mir-
ror the problematics of the chosen rule. The Saari triangle makes
it possible to visualize some paradoxical results in the exemplary
evaluations of digital websites through an imaginary case descrip-
tion via voting and MCDM. As candidates and voters in SC are put
to stand for alternatives and criteria in MCDM, the methodological
and pedagogical goals of the study are achieved.

Keywords: social choice, voting, Saari triangle, MCDM, ped-
agogy

1. Introduction

1.1. General background

The concept of evaluation is connected with the notions of preference, value,
choice, and decision-making. The two value concepts of “better” and “equal
in value to”, are strict preference and indifference – symbolized as ≻ or P ,
and ∼ or I, respectively. The preference relation A≻B, as an expression of
value, means that A is more valuable than B, while A∼B means that A and
B are equally valued in numeral (cardinal or ordinal) terms. The basic notion
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of preference refers to subjective comparative evaluation (Hansson and Grüne-
Yanoff, 2017). Preferences can also be incomparable or incomplete (Pini et al.,
2011; Rabinowicz, 2012).

Social choice (SC) theory includes several models, which aggregate individual
inputs (e.g., preferences, votes) into collective outputs (e.g., preferences, collec-
tive decisions). Two French mathematicians, Borda and Condorcet, were the
pioneers of SC in the 18th century, continued with important developments dur-
ing the 19th century, while later on the scientific community has been challenged
by the Arrovian tradition (see Arrow, 1951). In recent years, the emphasis of
the relevant research has been on computational social choice, see List (2013)
and Brandt et al. (2016). There is a wide range of methods and tools designed
to be utilized in SC, further applied in multi-criteria decision-making (MCDM)
(Brams and Fishburn, 2002; Nurmi and Meskanen, 2000; Schoop and Kilgour,
2017).

1.2. Methodological preliminaries and assumptions

Different voting methods presume different types of information from the voters
as input. The inputs, given by the voters, are called ballots, e.g., in the form of
a ranking of the set of candidates. Let N = {1, 2,. . . .,n} be a finite set of voters
(treated as criteria in MCDM), and X a finite set of m candidates (alternatives
in MCDM), with m ≥ 2 (|X|= m = 3 in this essay). A binary relation over
the set X describes the relative merits of any two outcomes in X with respect
to some criterion. Voters have rational preferences, i.e. each voter’s preference
relation ≻ is a strict order (complete, transitive, and strict). No voter is able
to order alternatives in a cycle. A (preference) profile P is a listing of all voters
and their preferences (Saari, 2021; Pacuit, 2019; Zahid, 2012).

A voting procedure is defined by two characteristics: 1) the type of a vote (a
ballot), and 2) the aggregation rule, by which the votes are counted to find the
winner or the resulting preference order. Upon denoting by L(X) the set of all
linear orderings on X, by W (X) the set of all weak orderings on X (i.e. allowing
for ties), and by C(X) the set of all complete orderings on X (i.e. accounting
for all the candidates), the inclusion relations L(X) ⊆ W (X) ⊆ C(X) hold. A
profile P is a function P : N → L(X). L(X)N denotes the set of all profiles. A
social choice function (a voting rule), denoted SCF, is defined as a mapping from
(admissible) ballot profiles to subsets of (feasible) candidates, formally SCF :
L(X)N → X. In other words, SCF simply takes a profile of voter preferences
as input and produces a winner as output (Brams and Fishburn, 2012; Saari,
2021; Zahid, 2012). To repeat, in this paper, the voting rules are assumed to
take strict preferences as inputs, and return one candidate (alternative) − the
winner. Multiple winners are theoretically possible, but not taken here into
account.

The simplest class of voting procedures is that of two-candidate elections.
The majority rule always presupposes voting over pairs of alternatives: candi-
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date A beats candidate B if and only if, in a pairwise comparison, a majority
of voters prefers A to B. We speak of a Condorcet winner when we deal with
a candidate, which, in a pairwise comparison, defeats every other candidate. A
Condorcet loser is a candidate, which, in a pairwise comparison, is defeated by
all other candidates. The absence of a Condorcet winner is called the Condorcet
paradox. The majority rule may produce cycles, which contradicts the assump-
tion of the transitivity of rational preferences (Brandt et al., 2016; Brams and
Fishburn, 2002).

The three positional rules, which are applied in this work, are described as
follows. According to the plurality (Pl) rule (“vote for one”) each voter votes for
a single candidate: the candidate with the most votes wins. The antiplurality
(Apl) rule (“vote for two”) states that each voter votes for two candidates, and
the candidate having obtained the most votes is the winner. The third positional
rule here utilized is the Borda Count (BCo). The Borda Count is also a scoring
rule, as it calculates a score based on weights specifically determined by voters’
rankings. In the case of n candidates, each voter ranks the candidates by giving
n-1 points to the most preferred candidate, n-2 points to the candidate ranked
second, . . . , 1 point to the candidate ranked second to last, and 0 points to
the bottom-ranked candidate. The candidate with the highest score wins, see
Section 2 (Pacuit, 2019; Saari, 2008).

The societal outcomes (the aggregates) produced by the positional meth-
ods can change radically when candidates (alternatives) are dropped or added.
With fixed voter profiles, by varying the choice of positional methods, multiple
contradictory outcomes can be generated. Different methods, used by the same
group of sincere (i.e. non-strategic) voters, can end up with different outcomes.
As voting rules are prototypes for various aggregation rules, same kinds of in-
consistencies may appear, e.g., in engineering decisions, statistics and MCDM
(Nurmi and Meskanen, 2000; Saari, 2008).

2. The Saari triangle as a method

The methodological essence of the Saari triangle dates back to the Borda–
Condorcet debate. Borda preferred a positional procedure, which gives a com-
plete ranking from the best to the worst candidate. On the contrary, Condorcet
suggested a pairwise majority ranking, where one candidate beats every other
candidate, being the Condorcet winner. The pros and cons of these methods
have brought an endless academic discussion (see, e.g., Brams and Fishburn,
2002; Saari, 1999).

According to Saari, social choice and voting theory are most complex in
their nature. The standard way to graph the voting outcomes in the simplest
case of three alternatives fails because the six-dimensional profile space does not
admit a basic graphical expression. Profiles for six alternatives define a 6!=720
dimensional space. An election with ten candidates – possible in presidential
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primaries in the USA – encompasses the 10! = 3 628 800 dimensional space.
With the aforementioned examples Saari raises awareness of the (computational)
complexity of the voting contexts, the “curse of dimensionality” (Saari, 2008).

Counter-arguments, promoting the “blessing of dimensionality” have been
presented, based on methodological advances. The degree of dimensionality has
an impact on, for instance, the distribution of data points in the decision space
and feasibility of algorithmic solutions (Gorban, Makarov and Tyukin, 2014).
In theory and practice, input-output systems, with the processes of aggregation
methods as mediators, have many inconsistencies and restrictions both on the
input and the output side. Brams and Fishburn (2002) repeatedly use expres-
sions “admissible ballots”, “admissible strategies”, and “feasible candidates”.
As mentioned in Section 1 of this paper, definitions of incomparability and
incompleteness of preferences are essential in the whole input-output system
(Pini et al., 2011). In linear programming, feasibility constraints restrict rea-
sonable options (referred to as loss of options) (Brandt et al., 2016). Various
near-synonymic concepts are a part of the (in)comparability-feasibility problem
(Pini et. al., 2011; Endriss, 2018; Gerasimou, 2018). Rapid progress, made in
the disciplines of computational social choice and artificial intelligence triggered
off an ethical discussions on the proper ways of design and use of the respective
technologies (Baum, 2020).

Figure 1. a. The Saari triangle (restructured from notations and figures in Saari,
1999. Figure 1.b. The six (3!=6) voter types (Saari 1992; Saari 1994)

The Saari triangle is a geometric profile representation (i.e. an equilateral
triangle simplex). In Fig. 1a, each candidate, A, B and C, is placed at the
vertex of the triangle. Each point in the triangle defines (corresponds to) a
ranking based on its distance to each vertex, according to the rule “the closer
the better”. Thus, the triangle is divided into thirteen ranking regions, six of
which are the strict ones, represented by the small triangles, and the remaining
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seven ones are parts of lines, with at least one tie (meaning: a tie ≡ indifference
≡∼). Accordingly, the six possible, strict preference rankings are:

1. A ≻B ≻ C; 2. A ≻ C ≻ B; 3. B ≻ A ≻ C ; 4. B ≻ C ≻ A; 5. C ≻ A ≻ B;
6. C ≻ B ≻ A

(see Hansson and Grüne-Yanoff, 2017). The Saari triangle actually constitutes
two interpretative applications of the plurality ternary diagrams: 1) the point-
share triangle and 2) the profile triangle (Eggers, 2020).

Thus, Fig. 2, as an instantiation of the Saari triangle, presents the essential
properties of the point-share and profile triangles in the same context. Further,
Fig. 2 depicts the way the number of voters with a specific ranking is related to
the associated ranking regions, corresponding to the example profile from Table
1. For instance, the number 4 in the upper small triangle of the example case
is in the region nearest to the C vertex, next nearest to B and farthest from A,
i.e. the ranking is C≻B≻A.

The midpoint of the Saari triangle represents a complete tie between the
candidates (alternatives) with equal shares of votes for each. The median line,
originating from any of the vertices and dividing the opposite side of the triangle
into the parts of equal length, represents a tie (e.g., the median from A to BC
represents a tie B∼C).

Table 1. An example of a preference profile (Saari, 2008)
An example of a preference profile

Number of votes Ranking Number of votes Ranking
5 A≻B≻C 4 C≻B≻A
2 A≻C≻B 2 C≻A≻B
4 B≻C≻A 0 B≻A≻C

A voter’s type is defined by the ranking of the candidates, which, in the case
of three candidates, results in six (3!=6) voter types, as shown in Fig. 1b. Each
voter is assumed to have a strict linear ordering of the candidates. A profile
determines the number of voters of each type. If p(j) denotes the fraction of
all voters that are of the jth type, j = 1,..., 6, then a (normalized) profile is the
vector p = [p(1), p(2), p(3), p(4), p(5), p(6)], i.e. a rational point in the simplex
Si(3!=6). According to Saari (1994), most points in Si(6) have irrational values,
which can be identified using the limits of integer points or from the profiles of
weighted voting systems. By defining an election as a mapping from all points
in Si(6), much wider applications are available. The election outcomes of the
unanimity profiles are the vertices of the representation triangle, and the space
of the normalized election outcomes is the full simplex Si(3) (Saari, 1994; 1999).

The concept of a procedure line is central to understanding the theoretical
and practical aspects of the Saari triangle, especially the formation of positional
voting paradoxes based on a fixed preference profile. Saari (1994) pinpoints
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that the reason for paradoxes lies in the differences between the Pl and Apl
methods. The former ignores a voter’s second ranked candidate, while the latter
treats the same candidate as a top-ranked one. The geometrical explanation for
the differences is that the line segment of (normalized) voting vectors w(s), s
belonging to [0,1/2] (in three dimensions), has the normalized voting vectors w(0)
= (1, 0, 0) and w(1/2)= (1/2, 1/2, 0) as their endpoints. Of these, w(0) represents
the Pl vote and w(1/2) the Apl vote. The normalized form for BCo is w(1/3)=
(2/3, 1/3, 0) (Saari, 1994; 1992). Further, any point in the convex set (hull)
CH [w(s)] is an election outcome for some profile, and the weights for the convex
representation of this point define the associated profile. The convex hulls relate
to each other as follows: CH [w(1/2)] ⊆ CH [w(s)] ⊆ CH [w(0)] = Si(3), i.e.
the representation triangle. The two limiting convex hulls are CH [w(0)] and
CH [w(1/2 )]. The Pl outcome is the function f [p, w(0)], the possible values
of which cover every point in the representation triangle [=Si(3)]. The Apl
outcome is the function f [p,w(1/2)]: its possible values are situated in the open,
small triangle connecting the middle points of the edges of the representation
triangle (Saari, 1994).

Saari (1994) defines Sup(p) ={all election rankings of 3 candidates that can
arise from profile p with changes in the positional voting method}. With certain
assumptions [w(s1) 6= w(s2)], using the barycentric point I of the full simplex
Si(3) and the ball B(I,r), with radius r>0, it can be proven that by selecting
any two election points q(j), j = 1, 2, in the ball B, there is a one-dimensional
line of profiles L[w(s1), w(s2)] (q1, q2) ∈ Si(6). If p belongs to L[w(s1), w(s2)]
(q1, q2), then f [p, w(s1)] = q(1) and f [p, w(s2)] = q(2), and further, for a profile
p, belonging to Si(6) and w(s), the election vector f [p,w(s)], belonging to Si(3),
is on the line segment, connecting f [(p,w(0)] and f [p, w(1/2)]. More precisely,

f [p, w(s)] = (1− s)f [p, w(0)] + 2sf [p, w(1/2)]; where s belongs to [0, 1/2].

The line segment, defined above, is called the procedure line PL(p) for the
profile p (Saari, 1994; 1992). By varying w(s) and holding a profile p fixed,
the function f(p, -) becomes a linear mapping of the voting vectors. The set
of positional voting vectors is the convex hull, defined by the two vertex voting
vectors, w(0), w(1/2). The procedure line of the election outcomes with vertices
f [p,w(0)] and f [p,w(1/2 )] is a (linear) transformation from the line of voting
vectors with vertices w(0), w(1/2), steered by the linear mapping. The trans-
formation emphasizes the way, in which the different w(s) election outcomes
along the procedure line reflect the weight each w(s) puts on the voter’s second-
ranked candidate. The properties of the procedure line completely determine
the properties of Sup(p) (Saari, 1994).

Later on, Saari has restructured the condition of the parameter s to range
from the interval 0 ≤ s ≤ 1/2 to the interval 0 ≤ s ≤ 1. As Saari (2008) puts
it: ”A positional election assigns points to candidates based on how each voter
positions them on the ballot: it is defined by the voting vector [w(1),w(2),w(3)],
with w(1)≥ w(2)≥ w(3) and w(1)≥ w(3), where w(j) points are assigned to the
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candidate a voter positions at the jth place. To normalize these rules, let w(3)
= 0 and divide the weights by w(1) to obtain w(s) = [w(1)/w(1),w(2)/w(1),
0] = (1, s, 0) for 0 ≤ s ≤ 1.” And further on: ”A candidate’s election tally
is her plurality tally plus s times the number of voters who have her second
ranked.” To sum up, procedure lines are straight lines, which have the Pl
and Apl outcomes as their endpoints, and all other (infinitely many) positional
outcomes are between the two, with the BCo outcome situated two thirds from
the Pl endpoint towards the Apl endpoint (i.e. on the two-dimensional plane)
(Saari and Barney, 2003).

The procedure line is a tool to analyze the positional voting paradoxes (with
three candidates or alternatives). It is important to notice that near I, be-
longing to Si(3), all thirteen ranking regions are very near to each other. For
example, the complete tie can be broken in twelve different ways. Two election
outcomes (tallies) can vary very minutely between each other, and still it is pos-
sible to place the procedure line in positions where f [p,w(s1)] and f [p,w(s2)]
have specific rankings of their own. Geometry clarifies the discrepancy, where
close election outcomes lead to different election rankings. A theorem, con-
structed by Saari (1994, Theorem 2.4.3), says that the jth election ranking is
in Sup(p) if and only if (the procedure line) PL(p) ∩R(j) is not an empty set,
where R(j) is the reversed ranking. Further, on the condition that the param-
eter k is an integer, 1 ≤ k ≤ 7, there exists a profile p such that Sup(p) has
precisely k rankings; and vice versa, if Sup(p) has k rankings, then 1 ≤ k ≤ 7.
When k is an integer, 1 ≤ k ≤ 4, there exists a profile p so that Sup(p) has
exactly k strict rankings; and conversely, if Sup(p) has k strict rankings, then
0 ≤ k ≤ 4. If the election ranking of the plurality and antiplurality vote are
the reversals of each other, then Sup(p) has either three or seven entries. In
the case of three entries, the entries of Sup(p) are the rankings of the plurality
vote, the antiplurality vote, and I. The election ranking for p is the same for
all choices of w(s) if and only if the plurality and antiplurality rankings are the
same (SIC! primarily tie rankings are omitted in this summary) (Saari, 1994).

The larger is the value of the parameter k, the more conflicting it is to make
valid conclusions about the results. Interestingly, when a profile p is fixed, the
values of probability of the voting outcomes depend on whether the value of k
is odd or even. When k is even, the probability is zero (k = 2, 4 or 6). The
probability to get seven different positional outcomes is 0.06. The probability
to get only one positional outcome (k = 1) is 0.31, the probability to get three
different positional outcomes is 0.44, and that of getting five different positional
outcomes is 0.19 (i.e. 0.06 + 0.31 + 0.44 + 0.19 = 1) (Saari and Tataru, 1999).

In the example case, which is depicted in Fig. 2, the procedure line deter-
mines the profile to produce seven different election rankings (the parameter
k = 7), four of which are strict ones and three are ties. This is the maximum
variation when positional rules are applied in the context of three candidates
(alternatives). The minimum number is one (k = 1), meaning that the pro-
cedure line is situated only in one strict ranking region. In the case of three
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ranking outcomes (k = 3), the procedure line crosses over at least one median
line, and the ranking outcomes are two strict ones and a tie between two candi-
dates (alternatives). In the three-valued case there is one exception: when the
line passes through the midpoint of the triangle, all median lines are traversed,
producing a complete tie, and the two strict rankings reverse each other. Five
different outcomes (k = 5) produce three strict rankings and two ties. With the
even ranking outcomes from two to six (k = 2, 4, 6) either of the two endpoints
of the procedure line is a tie (or indifference) (Saari, 1999; Saari and Tataru,
1999; Saari and Barney, 2003).

For a given voting procedure, each choice option receives a number of points
reflecting its ranking. (As a reminder, the equation by Saari is repeated here:
w(s) [w(1)/w(1),w(2)/w(1), 0] = (1, s, 0) for 0 ≤ s ≤ 1.) The positional rule
of “vote for one” is the plurality rule (Pl), represented by the vector (1, 0, 0),
the parameter s = 0; the positional rule of “vote for two” is the antiplurality
rule (Apl), represented by the vector (1, 1, 0), with s = 1. The Borda Count
(BCo) can be expressed as the vector (2, 1, 0), which becomes (1, 1/2 , 0) after
normalization, with s = 1/2 . The numbers of votes from Table 1 are visualized
accordingly in Fig. 2. For example, to tally the positional-method ballots, B
is top-ranked in the two regions nearest to B as the vertex, make the addition
0+4=4. Next, B is the second ranked in the two adjacent regions, containing
5 and 4. B’s final tally is counted (0+4)+s(5+4) = 4+9s, as shown in Fig. 2
(Saari, 1999, 2008; Saari and Barney, 2003).

Figure 2. An instantiation of the Saari triangle (Saari, 2008)

The numbers outside the equilateral triangle in Fig. 2 are the results of
pairwise comparisons, which are summed up from the given votes in the three
ranking regions on the same side of the median line bordering the two candidates
(alternatives) in comparison. For example, B gets 5+0+4 = 9 votes compared
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to C’s 2+2+4 = 8 votes, with the conclusion B≻C. In the example case, pairwise
outcomes end up in a cycle. No rational choice can be made (Saari, 2008).

Two kinds of symmetries in the representation triangle are responsible for all
the differences involved in the pairwise and positional ranking outcomes (this
observation extending to any number of candidates!). The Condorcet triplet
has no effect on positional rankings, but can produce pairwise cycles due to the
deficient recognition of transitive preferences. The reversal symmetry explains
all the paradoxes in positional settings, except for the Borda Count. Saari lists
several interrelated conclusions, based on the aforementioned methodological
symmetries and paradoxes of voting outcomes. A plethora of voting methods
do not identify all relevant data, with lost information as a consequence (Saari,
1999, 2008; Saari and Barney, 2003).

3. The example case applied in the MCDM context

Fig. 1a,b and Fig. 2, along with Table 1 in the previous section present the
basic theoretical construction of the Saari triangle, with an example case, estab-
lished by a fixed preference profile. The example case shows that when voting
according to the Pl rule, A has the winning score, whereas the Apl rule sets B
as the winner, and C wins in the case of the BCo rule.

Table 2. Weighted criteria of the websites A, B, and C

Weighted criteria of the websites A, B and C
Weights Criteria Weights Criteria

5 Usability (US) 4 Interoperability (I)
2 Flexibility (F) 2 Effectiveness (E)
4 Reliability (R) 0 Unspecified (UN)

The choice of the rule is crucial for reaching “the right decisions” (Saari,
1999, 2008). These results can be applied in the context of MCDM as candi-
dates stand for alternatives and voters for criteria (Nurmi and Meskanen, 2000).
Referring to the example case of Fig. 2, the alternatives A, B and C could rep-
resent, say, three (imaginary) digital websites of service providers in healthcare
(Vehko, Ruotsalainen and Hyppönen, 2019), as represented for this new inter-
pretation in Table 2 and Fig. 3. The criteria, with the weight of importance
could be, e.g., as this is shown in Table 2: 1) overall usability of digital services
(US), with the weight 5 (= 5 votes); 2) flexibility between digital and face-to-
face services (F), with the weight 2 (= 2 votes); 3) reliability of information (R),
with the weight 4 (= 4 votes); 4) interoperability of the information systems
(I), with the weight 4 (= 4 votes); 5) effectiveness (of the services) (E), with the
weight 2 (= 2 votes), and (potentially many) other unspecified criteria (UN),
with a zero weight (= 0 votes).
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Figure 3. The websites of A, B, and C with the six criteria in an MCDM context

The conclusive decision (or the best website among those evaluated) depends
on the voting method chosen – and evidently, on the process of naming the
justified criteria to be assessed and analyzed. The irrational, pairwise cycles
reside also in the MCDM context (Nurmi and Meskanen, 2000). The preferential
order in a pairwise manner between two triplets of criteria – e.g. (E,F,US)
>(I,R,UN) – cannot be reasonably interpreted because of the irrational cyclic
result produced by the initial voting procedure. But one question remains!
Which one is the best digital website? Saari himself prefers the Borda Count
to the plurality and antiplurality rules: he would choose the website C (Saari,
1999, 2008).

4. Conclusion

The mathematical constitution of the Saari triangle is most challenging, and
requires a thorough knowledge of the area to be fully understood. The geo-
metrical analysis of the formation of inconsistencies in both voting and MCDM
benefits the whole community of researchers and appliers. The visualizations
of the Saari triangle are appropriate especially for non-mathematicians. Every-
one interested in testing the properties of the Saari triangle as a digital user
interface can make acquaintance with it via a web-based application (Romney,
Tan and Tang, 2016). The leap from voting to MCDM may contain debatable
interpretations to be further discussed.

The pedagogical relevance of the Saari triangle could be empirically tested.
In the same spirit of pedagogy, Saari (2019) has most interestingly analyzed
his relation to the Arrovian tradition. Solutions to trans- and interdisciplinary
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problems presented by Saari (2019) can be summarized in the known adage:
“The whole can differ from the sum of its parts.”
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