PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Electric and magnetic field of different transpositions of overhead power line

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In Lithuanian and Polish electric power supply systems, the power transmission lines of 400 kV voltage represent one of the most potential sources of electric and magnetic fields generation. The 400 kV double-circuit overhead power transmission line and its surrounding environment were herby described and simulated through Finite Element Method using COMSOL Multiphysic software package. This study includes magnetic and electric field calculations. The study shows that the values of magnetic field strength and electric field strength present in the vicinity of a 400 kV overhead power transmission line tend to exceed limit values established in the Normative. Measurements are suggested to be taken for the purpose of finding maximum values of magnetic and electric field strength. To reduce these values, it is recommended to increase the height of supports, and restrict human personal and economic activities.
Rocznik
Strony
595--605
Opis fizyczny
Bibliogr. 20 poz., rys., tab., wz.
Twórcy
autor
  • Department of Electrical and Electronic Engineering Kaunas University of Technology Studentų 48-236A, LT-51367 Kaunas, Lithuania
autor
  • Department of Electrical and Electronic Engineering Kaunas University of Technology Studentų 48-236A, LT-51367 Kaunas, Lithuania
Bibliografia
  • [1] Olsen R.G., Deno D., Magnetic fields from electric power lines theory and comparison to measurements, IEEE Transactions on Power Delivery, vol. 3, no. 4, pp. 2127-2136 (1998).
  • [2] Crowley J.M., Fundamentals of Applied Electrostatics, Laplacian Press (1999).
  • [3] Havas M., Intensity of electric and magnetic fields from power lines within the business district of 60 Ontario communities, The Science of the Total Environment, vol. 298, no. 1, pp. 183-206 (2002).
  • [4] Safigianni A.S., Tsompanidou Ch.G., Measurements of electric and magnetic fields due to the operation of indoor power distribution substations, IEEE Transactions on Power Delivery, vol. 20, no. 3, pp. 1800-1805 (2005).
  • [5] Jin J.-M., Theory and Computation of Electromagnetic Fields, IEEE Press (2010).
  • [6] Nicolaou Ch.P., Papadakis A.P., Razis P.A., Kyriacou G.A., Sahalos J.N., Measurements and predictions of electric and magnetic fields from power lines, Electric Power Systems Research, vol. 81, no. 5, pp. 1107-1116 (2011).
  • [7] Dezelak K., Jakl F., Stumberger G., Arrangements of overhead power line phase conductors obtained by Differential Evolution, Electric Power Systems Research, vol. 81, no. 12, pp. 2164-2170 (2011).
  • [8] Deltuva R., Virbalis A.J., Žebrauskas S., Analysis of electric field in 330 kV overhead transmission line, Proceedings of International Conference Electrical and Control Technologies, Kaunas, Lithuania, pp. 255-259 (2011).
  • [9] Alipio R.S., Schroeder M.A.O., Afonso M.M., Oliveira T.A.S., Assis S.C., Electric fields of grounding electrodes with frequency dependent soil parameters, Electric Power Systems Research, vol. 83, no. 1, pp. 220-226 (2012).
  • [10] Deksnys R., Grėblikas P., Rutkauskas M., Rules for the Installation of Electrical Units, Vilnius: Energetics Press (2000).
  • [11] Silvester P.P., Ferrari R.L., Finite Elements for Electrical Engineers (3rd edition), Cambridge University Press (1996).
  • [12] Sadiku M.N.O., Numerical Techniques in Electromagnetics, CRC Press (2001).
  • [13] Jin J.-M., The Finite Element Method in Electromagnetics (3rd edition), Wiley-IEEE Press (2014).
  • [14] Deltuva R., Virbalis J.A., Gečys S., Electric and Magnetic Fields of the High Voltage Autotransformer, Electronics and Electrical Engineering, vol. 10, no. 106, pp. 9-12 (2010).
  • [15] Schroeder M.A.O., Afonso M.M., Oliveira T.A.S., Assis S.C., Computer Analysis of Electromagnetic Transients in Grounding Systems Considering Variation of Soil Parameters with Frequency, Journal of Electromagnetic Analysis and Applications, vol. 4, no. 12, pp. 475-480 (2012).
  • [16] Harakawa S., Nedachi T., Hori T., Takahashi K., Tochio K., Inoue N., Effect of electric field in conditioned aversion response, J Vet Med Sci, vol. 70, no. 6, pp. 611-613 (2008).
  • [17] Coskun O., Comlekci S., Effect of ELF electric field on some on biochemistry characters in the rat serum, J Vet Med Sci, Toxicol Ind Health, vol. 27, no. 4, pp. 329-333 (2011).
  • [18] Tynes T., Reitan J.B., Andersen A., Incidence of cancer among workers in Norwegian hydroelectric power companies, Scandinavian Journal of Work, Environment & Health, vol. 20, no. 5, pp. 39-44 (1994).
  • [19] Halliwell B., Gutteridge J., Free radicals in biology and medicine (4th edition), Oxford University Press (2007).
  • [20] Lee J.M., Pierce K.S., Spiering C.A., Electrical and Biological Effects of Transmission Lines, Bonneville Power Administration (1996).
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-112f5045-1003-4485-9ed4-820a9487c7f6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.