Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Adsorption of Lead on ROW 08 Supra Modified Activated Carbon
Języki publikacji
Abstrakty
The presented work is aimed at comparing two types of gaseous modification: conventional with the use of external source of energy (heat) and originally developed method with Joule heat generated during the flow of electrical current through a carbon bed. Conventional modification of ROW 08 Supra activated carbon was conducted in a rotary furnace in the atmosphere of (1) steam and carbon dioxide at temperature of 400 and 800°C and (2) air at the temperature of 400°C. The modification of activated carbon in the electric heating experimental system (referred to as SEOW) occurred in the process of heating of activated carbon during the flow of electric current through the carbon bed up to 400°C, followed by cooling down with the air or carbon dioxide. Both methods for modification of activated carbons allowed for increasing adsorption capacity towards ions Pb(II). The advantage of heating the activated carbon with the electric heating experimental system (SEOW) required far less energy than in case of conventional method (up to many fold). In case of modified carbon ROW 08 Supra, the increased adsorption efficiency was obtained for coals modified at 800°C and the carbon modified at 400°C with the participation of water vapor. As a result of modification of the SEOW carbons for all analyzed activated carbons, the adsorption percentage increased. Among all the modified activated carbon, the highest adsorption capacity has been given to carbon modified to SEOW through heating it to 400°C and air cooling as well. The results are described by the means of Freundlich and Langmuir isotherm. In order to determine the coefficients of Langmuir isotherm, five different rectilinear forms were used. Among the analyzed issues the best fit to the experimental results obtained for the I Langmuir isotherms (the highest values of the coefficients R2). The impact of pH and temperature on the effectiveness within the adsorption solution of Pb (II) was also analyzed. The most effective adsorption of lead from solutions of pH 2, 4, and 6 occurred at the highest pH, but the differences between the adsorption solution at pH 6 and pH 8 has been low. Within the adsorption from solutions having a pH of 2 a very little adsorption of lead was observed. Furthermore the size of adsorption of solutions at 20, 30 and 40°C was analyzed as well. What has been found is that through increasing the temperature the efficiency of the adsorption process within Pb (II) is raised.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
692--709
Opis fizyczny
Bibliogr. 27 poz., tab., rys.
Twórcy
autor
- Politechnika Częstochowska
autor
- Politechnika Częstochowska
autor
- Politechnika Częstochowska
autor
- Politechnika Częstochowska
Bibliografia
- 1. Abdel-Nasser A., El-Hendawy A.A.: The role of surface chemistry and solution pH on the removal of Pb2+ and Cd2+ ions via effective adsorbents from low-cost biomass. J. Hazard. Mater., 167, 260–267 (2009).
- 2. Ahn C.K., Park D., Woo S.H., Park J.M.: Removal of cationic heavy metal from aqueous solution by activated carbon impregnated with anionic surfactans. J. Hazard. Mater., 164, 1130–1136 (2009).
- 3. Ahmedna M., Marshall W.E., Husseiny A.A., Rao R.M., Goktepe I.:The use of nutshell carbons in drinking water filters for removal of trace metals, Water Res., 38, 1062–1068 (2006).
- 4. Aroua M.K., Yin C.Y., Lim F.N., Kan W.L., Daud W.M.A.W.: Effect of impregnation of activated carbon whit chelating polymer on adsorption kinetics of Pb2+. J. Hazard. Mater., 166, 1526–1529 (2009).
- 5. Ayyappan R., Carmalin A.S., Swaminathan K., Sandhya S.: Removal of Pb(II) from aqueous solution using carbon derived from agricultural wastes. Process. Biochem., 40, 1293–1299 (2005).
- 6. Boehm H.P.: Some aspects of the surface chemistry of carbon blacks and other carbons. Carbon, 32, 759–769 (1994).
- 7. Dąbek L., Ozimina E., Picheta-Oleś A.: Assessing the influence of the presence of heavy metals adsorbed on activated carbon on the efficiency of degradation of phenol using selected oxidizing agents. Soc. Ecological and Chemistry Engineering S; 19(2):249–257 (2012).
- 8. Dąbek L., Kulig E.: Sorpcja jonów ołowiu(II) na węglu aktywnym w obecności kwasów humusowych. Inż. Ochr. Środ., 3, 409–414 (2000).
- 9. Gercel Ö., Gercel H.F.: Adsorption of lead(II) ions from aqueous solutions by activated carbon prepared from biomass plant material of Euphorbia rigida. Chem. Eng. J., 132, 289–297 (2007).
- 10. Giraldo-Gutierrez L., Moreno-Pirajan J.C.: Pb(II) and Cr(VI) adsorption from aqueous solution on activated carbons obtained from sugar cane husk and sawdust. J. Anal. Appl. Pyrolysis, 81, 278–284 (2008).
- 11. Goel J., Kadirvelu K., Rajagopal C., Garg V.K.: Removal of lead(II) by adsorption using treated granual activated carbon: batch and column studies. J. Hazard. Mater., 125, 211–220 (2005).
- 12. Hamdaoui O., Naffrechoux E.: Modeling of adsorption isotherms of phenol and chlorophenols onto granular activated carbon. J. Hazard. Mater., 147, 381–394 (2007).
- 13. Khezami L., Capart R.: Removal of chromium(VI) from aqueous solution by activated carbons: Kinetic and equilibrium studies. J. Hazard. Mater.,B123, 223–231 (2005).
- 14. Lach J.: Wpływ sposobu modyfikacji węgli aktywnych na adsorpcję metali ciężkich. Seria Monografie 197, Wyd. P. Cz., Częstochowa 2011.
- 15. Lach J., Ociepa E., Stępniak L.: Sorpcja metali ciężkich na utlenionych węglach. Inż. Ochr. Środ., 9/2, 161–171 (2006).
- 16. Lach J., Okoniewska E., Stępniak L., Ociepa E.: Wpływ pola ultradźwiękowego na adsorpcję kationów kadmu. Rocznik Ochrona Środowiska (Annual Set the Environment Protection). 15(3), 2142–2157 (2013).
- 17. Malik D.J., Strelko V., Streat M., Puziy A.M.: Characterisation of novel modified active carbons and marine algal biomass for the selective adsorption of lead. Water Res., 36, 1527–1538, (2002).
- 18. Nadeem M., Shabbir M., Abdullah M.A., Shah S.S., McKay G.: Sorption of cadmium from aqueous solution by surfactant-modified carbon adsorbents. Chem. Engineering J., 148, 365–370 (2009).
- 19. Ociepa-Kubicka A., Ociepa E.: Toksyczne oddziaływanie metali ciężkich na rośliny, zwierzęta i ludzi. Inż. Ochr. Środ. 15(2) (2012).
- 20. Okoniewska E., Lach J., Stępniak L., Ociepa E.: Modyfikacja węgli aktywnych z wykorzystaniem pola ultradźwiękowego. Rocznik Ochrona Środowiska (Annual Set the Environment Protection). 15(1), 2563–2572 (2013).
- 21. Rao M., Rao G.P., Seshaiah K., Chudary N.V., Wang M.C.: Activated carbon from Ceiba pentandra hulls, an agricultural waste, as an adsorbent in the removal of lead and zinc from aqueous solutions. Waste Manage., 28, 849–858 (2008).
- 22. Sekar M., Sakthi V., Rengaraj S.: Kinetics and equillibrium adsorption study of lead(II) onto activated carbon prepared from coconut shell. J. Coll. Interf. Sci., 279(2), 307–313 (2004).
- 23. Singh C.K., Sahu J.N., Mahalik K.K., Mohanty C.R., Mohan B.R., Meikap B.C.: Studies on the removal of Pb(II) from wastewater by activated carbon developed from Tamarind wood activated with sulphuric acid. J. Hazard. Mater., 153, 221–228 (2008).
- 24. Świątkowski A., Pakuła M., Biniak S., Walczyk M.: Influence of the surface chemistry of modified activated carbon on its electrochemical behavior in the presence of lead(II) ion. Carbon, 9, 42, 3057–3069 (2004).
- 25. Walczyk M., Świątkowski A., Pakuła M., Biniak S.: Electrochemical studies of the interaction between a modified activated carbon surface and heavy metal ions. J. Appl. Electrochem., 35, 123–130 (2005).
- 26. Wilson K., Yang H., Seo C.W., Marshall W.E.: Select metal adsorption by activated carbon made from peanut shells. Bioresource Technol., 97, 2266–2270 (2006).
- 27. Zhang K., Cheung W.H., Valis M.: Roles of physical and chemical properties of activated carbon in the adsorption of lead ions. Chemosphere, 60, 1129–1140 (2005).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-112f060e-00af-41f5-b1ec-a46e15571d6a