PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Method of research for solar cookers performance characteristics- analysis and comparison

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Cooking is one of the most common activity in day-to-day life of every woman. In rural areas the transportation of fuel is major problem and the increasing demand of energy for cooking applications is gaining importance and various investigations are being carried out for performance enhancement of the solar cooker. The box-type solar cooker has a complex thermal analysis due to the transient heat transfer phenomenon involved in three dimensions. A comparison of the standard correlation available are analysed for accuracy of predicted results with experimental data. The investigation involves the experimental determination of the parameters viz. wind heat transfer coefficient, side and bottom loss coefficient, inner and outer glass temperature. The extensive data is analysed with that of standard correlations and the significance of the experimental data is checked. Analysis found to have deviation of 3%-20% in experimental and correlation data, which indicates that for accuracy of performance analysis the studied parameters should be determined experimentally.
Twórcy
  • University of Petroleum & Energy Studies, Dehradun, India
  • University of Petroleum & Energy Studies, Dehradun, India
autor
  • Shri Vishwakarma skill University , India
  • University of Petroleum & Energy Studies, Dehradun, India
Bibliografia
  • [1] Volunteers Technical In Assistance, Solar Cooker Construction Manual, 7 th, Mt. Rainier, Md. (USA) VITA, 1981.
  • [2] T.E. Bowman, J.H. Blatt, Solar Cookers, History, Design, Fabrication, Testing and Evaluation, Florida Institute of Technology, Florida, 1978.
  • [3] H.P. Garg, B. Bandyopadhyay, G. Datta, Mathematical modelling of the performance of a solar cooker, Appl. Energy. 14 (1983) 233–239. https://doi.org/10.1016/0306-2619(83)90066-1.
  • [4] J.S. Vaishya, T.C. Tripathi, D. Singh, R.H. Bhawalkar, M.S. Hegde, A hot box solar cooker: Performance analysis and testing, Energy Convers. Manag. 25 (1985) 373–379. https://doi.org/10.1016/0196-8904(85)90057-3.
  • [5] T.C. Kandpal, S.S. Mathur, The economics of box-type solar cookers, Energy Convers. Manag. 26 (1986) 233–235. https://doi.org/10.1016/0196-8904(86)90060-9.
  • [6] S.C. Mullick, T.C. Kandpal, A.K. Saxena, Thermal test procedure for box-type solar cookers, Sol. Energy. 39 (1987) 353–360. https://doi.org/10.1016/S0038-092X(87)80021-X.
  • [7] S.A. Channiwala, N.I. Doshi, Heat loss coefficients for box-type solar cookers, Sol. Energy. 42 (1989) 495–501. https://doi.org/10.1016/0038-092X(89)90050-9.
  • [8] B.A. Jubran, M.A. Alsaad, Parametric study of a box-type solar cooker, Energy Convers. Manag. 32 (1991) 223–234. https://doi.org/10.1016/0196-8904(91)90126-4.
  • [9] S.K. Samdarshi, S.C. Mullick, Analytical equation for the top heat loss factor of a flat-plate collector with double glazing, J. Sol. Energy Eng. Trans. ASME. 113 (1991) 117–122. https://doi.org/10.1115/1.2929955.
  • [10] H. Suharta, P.D. Sena, A.M. Sayigh, Komarudin, The social acceptibility of solar cooking in Indonesia, Renew. Energy. 16 (1999) 1151–1154. https://doi.org/10.1016/s0960-1481(98)00460-1.
  • [11] E.R. Pejack, Mathematical model of the thermal performance of box-type solar cookers, Renew. Energy. 1 (1991) 609–615. https://doi.org/10.1016/0960-1481(91)90004-9.
  • [12] S.C. Mullick, T.C. Kandpal, S. Kumar, Thermal test procedure for a paraboloid concentrator solar cooker, Sol. Energy. 46 (1991) 139–144. https://doi.org/10.1016/0038-092X(91)90087-D.
  • [13] A. Kumar, V.V.N. Kishor, Development and Testing of Improved Solar Rice Cooker, J. Sol. Energy Soc. India. 4 (1994) 87–91.
  • [14] T.C. Thulasi Das, S. Karmakar, D.P. Rao, Solar box-cooker: Part I-Modeling, Sol. Energy. 52 (1994) 265–272. https://doi.org/10.1016/0038-092X(94)90493-6.
  • [15] T.C. Thulasi Das, S. Karmakar, D.P. Rao, Solar box-cooker: Part II- Analysis and simulation, Sol. Energy. 52 (1994) 273–282. https://doi.org/10.1016/0038-092X(94)90494-4.
  • [16] S.M.A. Ibrahim, M.K. El-Reidy, The performance of a solar cooker in Egypt, Renew. Energy. 6 (1995) 1041–1050. https://doi.org/10.1016/0960-1481(95)00088-7.
  • [17] A.A. El-Sebaii, R. Domański, M. Jaworski, Experimental and theoretical investigation of a box-type solar cooker with multi-step inner reflectors, Energy. 19 (1994) 1011–1021. https://doi.org/10.1016/0360-5442(94)90088-4.
  • [18] G. Naik, G. Sharan, Assessing Consumer Preference for Product Features Selection: Solar Cookers, Vikalpa. 22 (1997) 49–54. https://doi.org/10.1177/0256090919970406.
  • [19] S.C. Mullick, T.C. Kandpal, S. Kumar, Testing of box-type solar cooker: Second figure of merit F2 and its variation with load and number of pots, Sol. Energy. 57 (1996) 409–413. https://doi.org/10.1016/S0038-092X(96)00116-8.
  • [20] M. Hussain, K.C. Das, A. Huda, The performance of a box-type solar cooker with auxiliary heating, Renew. Energy. 12 (1997) 151–155. https://doi.org/10.1016/S0960-1481(97)00037-2.
  • [21] S.S. Nandwani, J. Steinhart, H.M. Henning, M. Rommel, V. Wittwer, Experimental study of multipurpose solar hot box at Freiburg, Germany, Renew. Energy. 12 (1997) 1–20. https://doi.org/10.1016/S0960-1481(97)00014-1.
  • [22] E.H. Amer, J.K. Nayak, G.K. Sharma, Transient method for testing flat-plate solar collectors, Energy Convers. Manag. 39 (1998) 549–558. https://doi.org/10.1016/S0196-8904(97)10014-0.
  • [23] E.H. Amer, J.K. Nayak, G.K. Sharma, Transient test methods for flat-plate collectors: Review and experimental evaluation, Sol. Energy. 60 (1997) 229–243. https://doi.org/10.1016/S0038-092X(97)00023-6.
  • [24] P.A. Funk, D.L. Larson, Parametric model of solar cooker performance, Sol. Energy. 62 (1998) 63–68. https://doi.org/10.1016/S0038-092X(97)00074-1.
  • [25] A. Gaur, O.P. Singh, S.K. Singh, G.N. Pandey, Performance study of solar cooker with modified utensil, Renew. Energy. 18 (1999) 121–129. https://doi.org/10.1016/S0960-1481(98)00762-9.
  • [26] E. Biermann, M. Grupp, R. Palmer, Solar cooker acceptance in South Africa: Results of a comparative field-test, Sol. Energy. 66 (1999) 401–407. https://doi.org/10.1016/S0038-092X(99)00039-0.
  • [27] N. Akhtar, S.C. Mullick, Correlations for surface temperatures of the glass cover for estimation of heat- transfer coefficients in upward heat-flow in solar collectors with single glazing, J. Sol. Energy Eng. Trans. ASME. 121 (1999) 201–206. https://doi.org/10.1115/1.2888167.
  • [28] P.A. Funk, Evaluating the international standard procedure for testing solar cookers and reporting performance, Sol. Energy. 68 (2000) 1–7. https://doi.org/10.1016/S0038-092X(99)00059-6.
  • [29] S.D. Sharma, D. Buddhi, R.L. Sawhney, A. Sharma, Design, development and performance evaluation of a latent heat storage unit for evening cooking in a solar cooker, Energy Convers. Manag. 41 (2000) 1497–1508. https://doi.org/10.1016/S0196-8904(99)00193-4.
  • [30] H. Suharta, A.M. Sayigh, K. Abdullah, K. Mathew, Comparison of three types of Indonesian solar box cookers, Renew. Energy. 22 (2001) 379–387. https://doi.org/10.1016/S0960-1481(00)00062-8.
  • [31] S.C. Mullick, S.Y. Khan, B.K. Chourasia, Semi log plot and an approximate expression to find second figure of merit of box type solar cookers, in: Proc. Sol. World Congr. 2005 Bringing Water to World, Incl. Proc. 34th ASES Annu. Conf. Proc. 30th Natl. Passiv. Sol. Conf., Orlando, Florida, USA, 2005: pp. 1713–1716.
  • [32] S. Shaw, Development of a comparative framework for evaluating the performance of solar cooking devices, Comb. Ergon. Therm. Qual. Data into an Understandable, Reprod. Rigorous Test. Method, NY, USA. (2002) 1–53.
  • [33] O. V. Ekechukwu, N.T. Ugwuoke, Design and measured performance of a plane reflector augmented box-type solar-energy cooker, Renew. Energy. 28 (2003) 1935–1952. https://doi.org/10.1016/S0960-1481(03)00004-1.
  • [34] E.H. Amer, Theoretical and experimental assessment of a double exposure solar cooker, Energy Convers. Manag. 44 (2003) 2651–2663. https://doi.org/10.1016/S0196-8904(03)00022-0.
  • [35] A.H. Algifri, H.A. Al-Towaie, Efficient orientation impacts of box-type solar cooker on the cooker performance, Sol. Energy. 70 (2001) 165–170. https://doi.org/10.1016/S0038-092X(00)00136-5.
  • [36] N.M. Nahar, J.P. Gupta, P. Sharma, A novel solar cooker for animal feed, Energy Convers. Manag. 37 (1996) 77–80. https://doi.org/10.1016/0196-8904(95)00160-F.
  • [37] S. Kumar, S.C. Mullick, Wind heat transfer coefficient in solar collectors in outdoor conditions, Sol. Energy. 84 (2010) 956–963. https://doi.org/10.1016/j.solener.2010.03.003.
  • [38] S. Kumar, Estimation of design parameters for thermal performance evaluation of box-type solar cooker, Renew. Energy. 30 (2005) 1117–1126. https://doi.org/10.1016/j.renene.2004.09.004.
  • [39] H. Kurt, K. Atik, M. Özkaymak, Z. Recebli, Thermal performance parameters estimation of hot box type solar cooker by using artificial neural network, Int. J. Therm. Sci. 47 (2008) 192–200. https://doi.org/10.1016/j.ijthermalsci.2007.02.007.
  • [40] S.S. Nandwani, Design, construction and study of a hybrid solar food processor in the climate of Costa Rica, Renew. Energy. 32 (2007) 427–441. https://doi.org/10.1016/j.renene.2006.01.019.
  • [41] K. Schwarzer, M.E. Vieira da Silva, Solar cooking system with or without heat storage for families and institutions, Sol. Energy. 75 (2003) 35–41. https://doi.org/10.1016/S0038-092X(03)00197-X.
  • [42] A. Harmim, M. Boukar, M. Amar, Experimental study of a double exposure solar cooker with finned cooking vessel, Sol. Energy. 82 (2008) 287–289. https://doi.org/10.1016/j.solener.2007.10.008.
  • [43] M. Grupp, M. Balmer, B. Beall, H. Bergler, J. Cieslok, D. Hancock, G. Schröder, On-line recording of solar cooker use rate by a novel metering device: Prototype description and experimental verification of output data, Sol. Energy. 83 (2009) 276–279. https://doi.org/10.1016/j.solener.2008.08.002.
  • [44] M.M. Garba, I.M. Danmallam, Performance evaluation of rectangular and square type box type cooker, Niger. J. Renew. Energy. 16 (2011) 120–126.
  • [45] D.Y. Dasin, D. Habou, I. Rikoto, Performance evaluation of parabolic solar concentrator against international standard procedure in the tropical Environment, Niger. J. Renew. Energy. 15 (2011) 20–22.
  • [46] P.M. Cuce, Box type solar cookers with sensible thermal energy storage medium: A comparative experimental investigation and thermodynamic analysis, Sol. Energy. 166 (2018) 432–440. https://doi.org/10.1016/j.solener.2018.03.077.
  • [47] S. Geddam, G.K. Dinesh, T. Sivasankar, Determination of thermal performance of a box type solar cooker, Sol. Energy. 113 (2015) 324–331. https://doi.org/10.1016/j.solener.2015.01.014.
  • [48] M. Collares-Pereira, A. Cavaco, A. Tavares, Figures of merit and their relevance in the context of a standard testing and performance comparison methods for solar box – Cookers, Sol. Energy. 166 (2018) 21–27. https://doi.org/10.1016/j.solener.2018.03.040.
  • [49] S. Bhavani, S. Shanmugan, P. Selvaraju, C. Monisha, V. Suganya, Fuzzy interference treatment applied to energy control with effect of box type affordable solar cooker, in: Mater. Today Proc., 2019: pp. 1280–1290. https://doi.org/10.1016/j.matpr.2019.06.590.
  • [50] V. Kodur, P. Kumar, M.M. Rafi, Fire hazard in buildings: review, assessment and strategies for improving fire safety, PSU Res. Rev. 4 (2019) 1–23. https://doi.org/10.1108/prr-12-2018-0033.
  • [51] BIS Standard on Solar Cookers Parts I, II & III, (2000).
  • [52] W.H. McAdams, Heat transmission, McGraw-Hill, New York, USA, 1954.
  • [53] S.Y. Khan, Thermal Performance Evaluation of Solar Box Cookers. Ph. D. Thesis, (2004).
  • [54] N. Akhtar, S.C. Mullick, Computation of glass-cover temperatures and top heat loss coefficient of flat-plate solar collectors with double glazing, Energy. 32 (2007) 1067–1074. https://doi.org/10.1016/j.energy.2006.07.007.
  • [55] S. Sharples, P.S. Charlesworth, Full-scale measurements of wind-induced: Convective heat transfer from a roof mounted flat plate solar collector, Sol. Energy. 62 (1998) 69–77. https://doi.org/10.1016/S0038-092X(97)00119-9.
  • [56] E.M. Sparrow, J.W. Ramsey, E.A. Mass, Effect of finite width on heat transfer and fluid flow about an inclined rectangular plate, J. Heat Transfer. 101 (1979) 199–204. https://doi.org/10.1115/1.3450946.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-112512bb-492f-4bcc-8845-f52bcca3cd2d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.