PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Comparison of the mechanical property and microstructures of cementitious composites with nano- and micro-rutile phase TiO2

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Rutile phase TiO2 with the diameter of 50 nm and 500 nm were used to fabricate TiO2 modified cementitious composites (RTMCC) in this paper. The mechanical property and microstructures of RTMCC were compared. Research results showed both types of TiO2 can improve the flexural and compressive strengths of cementitious composites. The addition of 2.32 vol.% 50 nm and 500 nm TiO2 increased the 28 days flexural strength/compressive strength by 27.7%/10.78% and 53.71%/18.58%, respectively. In addition, the fracture tough-ness of cementitious composites can be enhanced by the inclusion of TiO2. The microstruc-ture analysis demonstrated that the strengthening effect of TiO2 to cementitious composites results from the nucleation effect, filling effect, pinning effect and self-curing effect. However, the reinforcing effect of 500 nm TiO2 is superior to that of 50 nm TiO2. Nuclear magnetic resonance and energy dispersive spectrum analyses suggested that 50 nm TiO2 can make the decalcification of the C–S–H (i.e., calcium is removed from the interlayer) and cause defect sites in the silicate chains, which lead to the less-density C–S–H. In addition, zeta potential and scanning electron microscope analyses manifested that 50 nm TiO2 is easier to reunite, therefore generating more defects in cementitious composites.
Rocznik
Strony
615--626
Opis fizyczny
Bibliogr. 30 poz., fot., rys., tab., wykr.
Twórcy
autor
  • School of Civil Engineering, Dalian University of Technology, Dalian 116024, China
autor
  • School of Civil Engineering, Dalian University of Technology, Dalian 116024, China
autor
  • Department of Mechanical Engineering, New York Institute of Technology, New York, NY 11568, USA
  • School of Civil Engineering, Dalian University of Technology, Dalian 116024, China
autor
  • School of Civil Engineering, Dalian University of Technology, Dalian 116024, China
Bibliografia
  • [1] P. Niewiadomski, J. Hola, A. C´wirzen, Study on properties of self-compacting concrete modified with nanoparticles, Arch. Civil Mech. Eng. 18 (3) (2018) 877–886.
  • [2] B. Han, L. Zhang, S. Zeng, S. Dong, X. Yu, R. Yang, J. Ou, Nano- core effect in nano-engineered cementitious composites, Composites Part A: Appl. Sci. Manufact. 95 (2017) 100–109.
  • [3] B. Han, S. Sun, S. Ding, L. Zhang, X. Yu, J. Ou, Review of nanocarbon-engineered multifunctional cementitious composites, Composites Part A: Appl. Sci. Manufact. 70 (2015) 69–81.
  • [4] B. Han, Z. Li, L. Zhang, S. Zeng, X. Yu, B. Han, J. Ou, Reactive powder concrete reinforced with nano SiO2-coated TiO2, Construct. Build. Mater. 148 (2017) 104–112.
  • [5] J.M. Yang, H.O. Shin, D.Y. Yoo, Benefits of using amorphous metallic fibers in concrete pavement for long-term performance, Arch. Civil Mech. Eng. 17 (4) (2017) 750–760.
  • [6] S. Dong, B. Han, J. Ou, Z. Li, L. Han, X. Yu, Electrically conductive behaviors and mechanisms of short-cut super-fine stainless wire reinforced reactive powder concrete, Cement Concrete Composites 72 (2016) 48–65.
  • [7] M. Ouchi, H. Okamura, Self-compacting high performance concrete, Concrete Int. (1997) 50–54.
  • [8] B.G. Han, Y.Y. Wang, S.F. Dong, L.Q. Zhang, S.Q. Ding, X. Yu, J. P. Ou, Smart concrete and structures: a review, J. Intell. Mater. Systems Struct. 26 (2015) 1303–1345.
  • [9] S.L. Colston, D. O'connor, P. Barnes, E.L. Mayes, S. Mann, H. Freimuth, W. Ehrfeld, Functional micro-concrete: the incorporation of zeolites and inorganic nano-particles into cement micro-structures, J. Mater. Sci. Lett. 19 (12) (2000) 1085–1088.
  • [10] F. Aslani, Nanoparticles in self-compacting concrete – a review, Magazine Concrete Res. 67 (20) (2015) 1084–1100.
  • [11] M. Bastami, M. Baghbadrani, F. Aslani, Performance of nano-silica modified high strength concrete at elevated temperatures, Construct. Build. Mater. 68 (2014) 402–408.
  • [12] B. Han, Z. Wang, S. Zeng, D. Zhou, X. Yu, X. Cui, J. Ou, Properties and modification mechanisms of nano-zirconia filled reactive powder concrete, Construct. Build. Mater. 141 (2017) 426–434.
  • [13] Z. Li, B. Han, X. Yu, S. Dong, L. Zhang, X. Dong, J. Ou, Effect of nano-titanium dioxide on mechanical and electrical properties and microstructure of reactive powder concrete, Mater. Res. Exp. 4 (9) (2017) 095008.
  • [14] H. Noorvand, A.A.A. Ali, R. Demirboga, N. Farzadnia, H. Noorvand, Incorporation of nano TiO2 in black rice husk ash mortars, Construct. Build. Mater. 47 (2013) 1350–1361.
  • [15] Z. Li, J. Wang, B. Han, X. Yu, J. Ou, Investigating size effect of anatase phase nano TiO2 on the property of cement-based composites, Mater. Res. Exp. 5 (8) (2018) 085034.
  • [16] B. Han, L. Zhang, J. Ou, Smart and Multifunctional Concrete toward Sustainable Infrastructures, Springer, Berlin, Heidelberg, 2017.
  • [17] B.Y. Lee, A.R. Jayapalan, K.E. Kurtis, Effects of nano-TiO2 on properties of cement-based materials, Magazine Concrete Res. 65 (21) (2013) 1293–1302.
  • [18] A.N. Givi, S.A. Rashid, F.N.A. Aziz, M.A.M. Salleh, Experimental investigation of the size effects of SiO2 nano-particles on the mechanical properties of binary blended concrete, Composites Part B: Eng. 41 (8) (2010) 673–677.
  • [19] D.A. Porter, K.E. Easterling, M. Sherif, Phase Transformations in Metals and Alloys, CRC Press, 2009.
  • [20] R.M. Dhir, M.D. Newlands, K.A. Paine, Role of Concrete in Sustainable Development, Thomas Telford, 2003.
  • [21] Y.B. Huang, J.S. Qian, X.P. Zhou, Brittleness index of quasibrittle material based on size effect of strength, Eng. Mech. 23 (1) (2006) 38–42.
  • [22] W. Li, Z. Huang, F. Cao, Z. Sun, S.P. Shah, Effects of nano-silica and nano-limestone on flowability and mechanical properties of ultra-high-performance concrete matrix, Construct. Build. Mater. 95 (2015) 366–374.
  • [23] J.J. Kim, E.M. Foley, M.M.R. Taha, Nano-mechanical characterization of synthetic calcium-silicate-hydrate (C–S– H) with varying CaO/SiO2 mixture ratios, Cement Concrete Composites 36 (2013) 65–70.
  • [24] G. LeSaout, E. Lécolier, A. Rivereau, H. Zanni, Chemical structure of cement aged at normal and elevated temperatures and pressures: Part I. Class G oilwell cement, Cement Concrete Res. 36 (1) (2016) 71–78.
  • [25] F. Pelisser, P.J.P. Gleize, A. Mikowski, Effect of the Ca/Si molar ratio on the micro/nanomechanical properties of synthetic CSH measured by nanoindentation, J. Phys. Chem. C 116 (32) (2012) 17219–17227.
  • [26] T.F. Sevelsted, J. Skibsted, Carbonation of C–S–H and C–A–S–H samples studied by 13C, 27Al and 29Si MAS NMR spectroscopy, Cement Concrete Res. 71 (2015) 56–65.
  • [27] J.J. Thomas, H.M. Jennings, A.J. Allen, Relationships between composition and density of tobermorite, jennite, and nanoscale CaO–SiO2–H2O, J. Phys. Chem. C 114 (17) (2010) 7594–7601.
  • [28] B.G. Han, Q.F. Zheng, S.W. Sun, S.F. Dong, L.Q. Zhang, X. Yu, J. P. Ou., Enhancing mechanisms of multi-layer graphenes to cementitious composites, Composites Part A: Appl. Sci. Manufact. 101 (2017) 143–150.
  • [29] M.X. Wang, Z.H. Huang, W. Lv, Q.H. Yang, F. Kang, K. Liang, Water vapor adsorption on low-temperature exfoliated graphene nanosheets, J. Phys. Chem. Solids 73 (12) (2012) 1440–1443.
  • [30] Z. Li, S.Q. Ding, X. Yu, B.G. Han, J.P. Ou., Multifunctional cementitious composites modified with nano titanium dioxide: a review, Composites Part A: Appl. Sci. Manufact. 111 (2018) 115–137.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1117fe0a-88fe-4b5e-9689-90a8bd302d8e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.