Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Polymer concretes constitute a commonly used group of materials with known and well-studied properties for construction applications. The following research is a preliminary investigation into the basic mechanical properties and structure of a proposed novel polymer concrete with a lanthanum oxide nanopowder additive. The composite material is made from epoxy resin binder with milled expanded clay filler and La2O3 nanopowder. The research samples were made by simple and scalable casting methods. The conducted mechanical testing included compression and flexural examinations typical for this group of materials, as well as Brinell hardness measurements. The microstructure of the manufactured samples was examined utilizing scanning electron microscopy supported by EDS analysis. The obtained results reveal acceptable mechanical properties for the investigated materials, with slight increases in the measured property values for increasing amounts of the nanoparticle addition. The SEM and EDS investigations show the dispersion of filler and nanopowder additive throughout the samples, which is advantageous for the macroscopic properties of the material. The slight agglomeration of the lanthanum oxide powder could be further decreased with the inclusion of another processing step, for example, resin mixture sonication. The mechanical properties of the investigated materials are adequate and further research is suggested to test the possibilities of developing the examined polymer concrete for anti-radiation and radiation shielding applications.
Czasopismo
Rocznik
Tom
Strony
104--109
Opis fizyczny
Bibliogr. 25 poz., rys., tab.
Twórcy
autor
- Silesian University of Technology, Faculty of Materials Engineering, ul. Z. Krasińskiego 8, 40-019 Katowice, Poland
autor
- Silesian University of Technology, Faculty of Materials Engineering, ul. Z. Krasińskiego 8, 40-019 Katowice, Poland
Bibliografia
- [1] Reda Taha M.M., Genedy M., Ohama Y., 17 – Polymer concrete, In: Developments in the Formulation and Reinforcement of Concrete (Second Edition), ed. S. Mindess, Woodhead Publishing, 2019, 391-408.
- [2] Frigione M., 16 – Concrete with polymers, In Eco-Efficient Concrete, eds. F. Pacheco-Torgal, S. Jalali, J. Labrincha, V.M. John, Woodhead Publishing, 2013, 386-436.
- [3] Vipulanandan C., Dharmarajan N., Ching E., Mechanical behavior of polymer concrete systems, Materials and Structures 1988, 21 (4), 268-277, DOI: 10.1007/BF02481825.
- [4] Gorninski J.P., Dal Molin D.C., Kazmierczak C.S., Study of the modulus of elasticity of polymer concrete compounds and comparative assessment of polymer concrete and Portland cement concrete, Cement and Concrete Research 2004, 34 (11), 2091-2095, DOI: 10.1016/j.cemconres.2004.03.012.
- [5] Bedi R., Chandra R., Singh S.P., Mechanical properties of polymer concrete, Journal of Composites 2013, 2013, 948745, DOI: 10.1155/2013/948745.
- [6] Vipulanandan C., Paul E., Characterization of poliester polymer and polymer concrete, Journal of Materials in Civil Engineering 1993, 5(1), 62-82. DOI: 10.1061/(ASCE)0899-1561(1993), 5:1(62) (acccessed 2023.02.19).
- [7] Abdel-Fattah H., El-Hawary M.M., Flexural behavior of polymer concrete, Construction and Building Materials 1999, 13(5), 253-262, DOI: 10.1016/S0950-0618(99)00030-6.
- [8] Vipulanandian C., Paul E., Performance of epoxy and polyester polymer concrete, ACI Materials Journal 1990, 87(3), DOI: 10.14359/2187.
- [9] Bedi R., Chandra R., Singh S.P., Reviewing some properties of polymer concrete, The Indian Concrete Journal 2014, 88(8), 47-68.
- [10] Reis J.M.L., Ferreira A.J.M., A contribution to the study of the fracture energy of polymer concrete and fibre reinforced polymer concrete, Polymer Testing 2004, 23(4), 437-440, DOI: 10.1016/j.polymertesting.2003.09.008.
- [11] Orak S., Investigation of vibration damping on polymer concrete with polyester resin, Cement and Concrete Research 2000, 30(2), 171-174, DOI: 10.1016/S0008-8846(99)00225-2.
- [12] Reis J.M.L., Fracture and flexural characterization of natural fiber-reinforced polymer concrete, Construction and Building Materials 2006, 20(9), 673-678, DOI: 10.1016/j.conbuildmat.2005.02.008.
- [13] Xiao R.Y., Chin C.S., High performance polymer concrete, In: Advances in Building Technology, eds. M. Anson, J.M. Ko, E.S.S. Lam, Elsevier 2002, 921-928.
- [14] Gorninski J.P., Dal Molin D.C., Kazmierczak C.S., Strength degradation of polymer concrete in acidic environments, Cement and Concrete Composites 2007, 29(8), 637-645, DOI: 10.1016/j.cemconcomp.2007.04.001.
- [15] Szajerski P., Celinska J., Gasiorowski A., Anyszka R., Walendziak R., Lewandowski M., Radiation induced strength enhancement of sulfur polymer concrete composites based on waste and residue fillers, Journal of Cleaner Production 2020, 271, 122563, DOI: 10.1016/j.jclepro.2020.122563.
- [16] Jo B.-W., Park S.-K., Kim D.-K., Mechanical properties of nano-MMT reinforced polymer composite and polymer concrete, Construction and Building Materials 2008, 22(1), 14-20, DOI: 10.1016/j.conbuildmat.2007.02.009.
- [17] Pacheco Torgal F., Ding Y., 13 – Concrete with polymeric wastes, In: Eco-Efficient Concrete, eds. F. Pacheco-Torgal, S. Jalali, J. Labrincha, V.M. John, Woodhead Publishing 2013, 311-339.
- [18] Rebeiz K.S., Serhal S.P., Craft A.P., Properties of polymer concrete using fly ash, Journal of Materials in Civil Engineering 2004, 16(1), 15-19, DOI: 10.1061/(ASCE)0899-1561(2004)16:1(15) (acccessed 2023.02.19).
- [19] Jo B.-W., Park S.-K., Park J.-C., Mechanical properties of polymer concrete made with recycled PET and recycled concrete aggregates, Construction and Building Materials 2008, 22(12), 2281-2291, DOI: 10.1016/j.conbuildmat.2007.10.009.
- [20] Smoleń J., Tomaszewska K., Junak G., Kozioł M., Polimerobeton zbrojony krótkimi włóknami szklanymi, z dodatkiem odpadowego szkła kineskopowego Short glass fiber reinforced polymer concrete with addition of waste cathode-ray tube (CRT) glass, Cement Wapno Beton 2022, 27(2), 102-114, DOI: 10.32047/CWB.2022.27.2.2.
- [21] Reis J.M.L., Effect of textile waste on the mechanical properties of polymer concrete, Materials Research 2009, 12.
- [22] Smoleń J., Değirmenci B., Tekeli B.D., Nowacki B., Wykorzystanie odpadu szkła samochodowego do produkcji epoksydowego polimerobetonu (The application of automotive glass waste in the production of epoxy polymer concrete), Cement Wapno Beton 2021, 26(5), 402-412, DOI: 10.32047/CWB.2021.26.5.4.
- [23] Almuqrin A.H., Hanfi M., Mahmoud K.A.-O., Sayyed M.A.-O., Al-Ghamdi H., Aloraini D.A., The role of La(2)O(3) in Enhancement the Radiation Shielding Efficiency of the Tellurite Glasses: Monte-Carlo simulation and theoretical study, LID-10.3390/ma14143913 [doi] LID-3913. (1996-1944 (Print)). From 2021 Jul 13.
- [24] Issa S.A.M., Ali A.M., Tekin H.O., Saddeek Y.B., Al-Hajry A., Algarni H., Susoy G., Enhancement of nuclear radiation shielding and mechanical properties of YBiBO3 glasses, using La2O3 Nuclear Engineering and Technology 2020, 52(6), 1297-1303, DOI: 10.1016/j.net.2019.11.017.
- [25] Alzahrani J.S., Hessien M., Alrowaili Z.A., Kebaili I., Olarinoye I.O., Arslan H., Al-Buriahi M.S., Fabrication and characterization of La2O3–Fe2O3 –Bi2O3 nanopowders: Effects of La2O3 addition on structure, optical, and radiation-absorption properties, Ceramics International 2022, 48(16), 22943-22952, DOI: 10.1016/j.ceramint.2022.04.255.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-11134284-bd44-4ad0-9372-c2974c427d1c