PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Designing a connecting pin for a gantry crane by integrating the weighted sum method with the Taguchi method

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper includes studying the method of calculating joint design and then building a multi-objective optimization problem model using the weighted sum and Taguchi methods. The research object is the joint between the gantry crane leg and the beam. Due to the characteristics of the connection bearing large and changing loads, research is necessary to improve safety, longevity, and reliability. The experimental problem model has four design variables and four value levels. The study uses the orthogonal matrix L16 to calculate the response values for each objective function at each stage. To apply the weighted sum method, the study selects the objective function weights for equivalent stress, contact stress, and fatigue strength, transforming the multi-objective problem into a single-objective problem. The test results identified a new set of parameters meeting the goals. The fatigue criterion was reduced by 8.9%, and the fatigue safety factor increased from 1.36 to 1.39. The equivalent stress was decreased by 9%, and the safety factor increased from 2.58 to 2.84. Contact stress was reduced by 37%, and the safety factor increased from 1.29 to 2. Combining these two methods not only solves problems in engineering but can also solve many problems in different fields.
Twórcy
  • Faculty of Mechanical Engineering, Hanoi University of Civil Engineering, 55 Giai Phong Road, Hai Ba Trung District, Hanoi, 100000, Vietnam
Bibliografia
  • 1. Jiao Q., Qin Y., Han Y., Gu J. Modeling and Optimization of Pulling Point Position of Luffing Jib on Portal Crane. Mathematical Problems in Engineering, 2021. https://doi.org/10.1155/2021/4627257.
  • 2. Duong T.G., Ha T.P. Study on reasonable geometrical parameters of box-shaped crane steel structure taking into account the influence of local stability conditions. Journal of Science and Technology in Civil Engineering, 2014; 8(4): 36–43. https://stce.huce.edu.vn/index.php/vn/article/view/581/345.
  • 3. Duong T.G. Reasonable Design Method of Box Crane Girder by Taguchi Method. Journal of Applied Engineering Science, 2024; 22(1): 100–112. https://doi.org/10.5937/jaes0-45536.
  • 4. Hoshii T., Harada T. Strength Evaluation of Pin Joints for Crane Structure under Tensile Loads, Engineering Review, 1987; 20(3). https://www.ihi.co.jp/blkhnd/pdf/3.pdf.
  • 5. Ricker D.T. Design and Construction of Lifting Beams, Sengineering Journal, American Institute of Steel Construction, 1991; 149–158.
  • 6. Budynas R.G., Nisbett J.K. Shigley’s Mechanical Engineering Design. 10th edition, McGraw-Hill, 2020.
  • 7. FEM 1.001: Rules for the Design of Hoisting Appliances (3rd Edition Revised 1998.10.01).
  • 8. EN 1993-1-1: Eurocode 3: Design of steel structures – Part 1-1: General rules and rules for buildings (2005).
  • 9. EN 1993-1-8: Eurocode 3: Design of steel structures – Part 1-8: Design of joints (2005).
  • 10. Conde J., Da Silva L.S., Tankova T., Simões R., Abecasis T. Design of pin connections between steel members, Journal of Constructional Steel Research, 2022; 201: 107752. https://doi.org/10.1016/j.jcsr.2022.107752.
  • 11. Li Y., Huang R., Zhao S., Wang J. Contact pressure analysis of pin-loaded lug with clearance. Advances in Mechanical Engineering, 2022; 14(6): 1–15. https://doi.org/10.1177/16878132221107475.
  • 12. Bernardin P., Lasova V., Sedlacek F. Strength analysis of pin connections using computer-aided systems, MM Science Journal, 2017. https://doi.org/10.10.17973/mmsj.2017_03_2016103.
  • 13. Pedersen N.L. Stress concentration and optimal design of pinned connections. The Journal of Strain Analysis for Engineering Design, 2019; 54(2): 95–104. https://doi.org/10.1177/0309324719842766.
  • 14. Rao R.V., Savsani V.J. Mechanical design optimization using advanced optimization techniques. Springer, 2012.
  • 15. Vinod, N.P. Optimization of Shaft Dimensions: A Comparative Study Using Computational Method and Finite Element Analysis. International Journal of Intelligent Systems and Applications in Engineering, 2024; 12(22s): 1049–1054. https://ijisae.org/index.php/IJISAE/article/view/6610.
  • 16. Choi J. W., Han S. H., Lee K. H. Structural analysis and optimization of an automotive propeller shaft. Advances in Mechanical Engineering. 2021; 13(10). https://doi.org/10.1177/16878140211053173.
  • 17. Pedersen, N. L. Aspects of stress in optimal shaft shoulder fillet. Journal of Strain Analysis for Engineering Design. 2018; 53(5): 285–294. https://doi.org/10.1177/0309324718763514.
  • 18. Duong T. G., Nguyen V.T., Nguyen T.D. Optimizing the weight of the two-level gear train in the personal rescue winch. Archive of Mechanical Engineering, 2021; 68(3): 271–286. https://doi.org/10.24425/ame.2021.138393.
  • 19. Chen H.J., Lin H.C., Tang C.W. Application of the Taguchi Method for Optimizing the Process Parameters of Producing Controlled Low-Strength Materials by Using Dimension Stone Sludge and Lightweight Aggregates. Sustainability, 2021; 13: 5576. https://doi.org/10.3390/su13105576.
  • 20. Duong T. G. Determining parameters to optimize the pulling force for the Luffing Jib Tower Cranes by Taguchi method. Archive of Mechanical Engineering, 2023; 70(3): 387–407. https://doi.org/10.24425/ame.2023.146845.
  • 21. Duong T. G. Application of the Taguchi method to determine optimized parameters for designing brake of hand winch. EUREKA: Physics and Engineering, 2023; 6: 137–148. https://doi.org/10.21303/2461-4262.2023.002956.
  • 22. Duong T.G. Study to Determine the Effect of Blade Distance and Chain Speed on the Productivity of Trench Excavators Using Taguchi Method. Advances in Science and Technology Research Journal 2023; 17(4): 139–149. https://doi.org/10.12913/22998624/169427.
  • 23. Marler R. T., Arora J. S. The weighted sum method for multi-objective optimization: new insights, Struct Multidisc Optim, 2010; 41: 853–862. https://doi.org/10.1007/s00158-009-0460-7.
  • 24. Chagas J. B.C., Wagner M. A weighted-sum method for solving the bi-objective traveling thief problem. Computers & Operations Research, 2022; 138. https://doi.org/10.1016/j.cor.2021.105560.
  • 25. Li Y., Yang Q., Chang T., Qin T., Wu F. Multi-load cases topological optimization by weighted sum method based on load case severity degree and ideality. Advances in Mechanical Engineering, 2014; 12(8). https://doi.org/10.1177/1687814020947510.
  • 26. Stanimirovic I. P., Zlatanovic, M L., Petkovic M. D. On the linear weighted sum method for multi-objective optimization. Facta Acta Univ, 2011: 26(4): 49–63.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-110f065c-ba7d-4a58-beef-86388b47d8d2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.