PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Optimal reshaping and stress controlling of double-layer spherical structures under vertical loadings

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Architectural structures’ nodal coordinates are significant to shape appearance; vertical overloading causes displacement of the joints resulting in shape distortion. This research aims to reshape the distorted shape of a double-layer spherical numerical model under vertical loadings; meanwhile, the stress in members is kept within the elastic range. Furthermore, an algorithm is designed using the fmincon function to implement as few possible actuators as possible to alter the length of the most active bars. Fmincon function relies on four optimization algorithms: trust-region reflective, active set, Sequential quadratic progra mming (SQP), and interior-point. The fmincon function is subjected to the adjustment technique to search for the minimum number of actuators and optimum actuation. The algorithm excludes inactive actuators in several iterations. In this research, the 21st iteration gave optimum results, using 802 actuators and a total actuation of 1493 mm. MATLAB analyzes the structure before and after adjustment and finds the optimum actuator set. In addition, the optimal actuation found in MATLAB is applied to the modeled structure in MATLAB and SAP2000 to verify MATLAB results.
Rocznik
Strony
591--606
Opis fizyczny
Bibliogr. 36 poz., il., tab.
Twórcy
  • Faculty of Civil and Environmental Engineering, Gdansk University of Technology, Gdańsk, Poland
  • Civil Engineering Department, University of Raparin, Rania, Kurdistan Region, Iraq
  • Civil Engineering Department, University of Raparin, Rania, Kurdistan Region, Iraq
  • Civil Engineering Department, Tishk International University, Erbil, Kurdistan Region, Iraq
autor
  • Faculty of Civil Engineering University of Tabriz, Tabriz, Iran
autor
  • Faculty of Civil Engineering University of Tabriz, Tabriz, Iran
  • Faculty of Civil and Environmental Engineering, Gdansk University of Technology, Gdańsk, Poland
Bibliografia
  • [1] X. Chang, X. Haiyan, “Using sphere parameters to detect construction quality of spherical buildings”, in 2nd International Conference on Advanced Computer Control. IEEE, 2010; DOI: 10.1109/ICACC.2010.5487073.
  • [2] B. Richard, “Las Vegas: past, present and future”, Journal of Tourism Futures, 2018, vol. 4, no. 3, pp. 182-192; DOI: 10.1108/JTF-05-2018-0027.
  • [3] N.M. Saeed, A.S.K. Kwan, “Simultaneous displacement and internal force prescription in shape control of pin-jointed assemblies”, AIAA Journal, 2016, vol. 54, no. 8, pp. 2499-2506; DOI: 10.2514/1.J054811.
  • [4] C.J. Weeks, “Static shape determination and control of large space structures: I. The flexible beam”, Journal of Dynamic Systems, Measurement and Control, 1984,vol. 106, no. 4, pp. 261-266; DOI: 10.1115/1.3140683.
  • [5] R.T. Haftka, H.M. Adelman, “An analytical investigation of shape control of large space structures by applied temperatures”, AIAA Journal, 1985, vol. 23, no. 3, pp. 450-457; DOI: 10.2514/3.8934.
  • [6] H. Irschik, “A review on static and dynamic shape control of structures by piezoelectric actuation”, Engineering Structures, 2002, vol. 24, no. 1, pp. 5-11; DOI: 10.1016/S0141-0296(01)00081-5.
  • [7] R.T. Haftka, “Limits on static shape control for space structures”, AIAA Journal, 1991, vol. 29, no. 11, pp. 1945-1950; DOI: 10.2514/3.10823.
  • [8] H. Pichler, J. Irschik, “Dynamic shape control of solids and structures by thermal expansion strains”, Journal of Thermal Stresses, 2001, vol. 24, no. 6, pp. 565-576; DOI: 10.1080/014957301300158102.
  • [9] Z. You, “Displacement control of prestressed structures”, Computer Methods in Applied Mechanics and Engineering, 1997, vol. 144, no. 1-2, pp. 51-59; DOI: 10.1016/S0045-7825(96)01164-4.
  • [10] S.-M. Yang, J.-H. Roh, J.-H. Han, I. Lee, “Experimental studies on active shape control of composite structures using SMA actuators”, Journal of Intelligent Material Systems and Structures, 2006, vol. 17, no. 8-9, pp. 767-777; DOI: 10.1177/1045389X06055830.
  • [11] Z. Wang, T. Li, Y. Cao, “Active shape adjustment of cable net structures with PZT actuators”, Aerospace Science Technology, 2013, vol. 26, no. 1, pp. 160-168; DOI: 10.1016/j.ast.2012.03.001.
  • [12] K. Wang, A. Preumont, “Shape control of an adaptive spherical shell reflector under space environment”, in Eighth Symposium on Novel Photoelectronic Detection Technology and Applications, vol. 12169. SPIE, 2022, pp. 2462-2467; DOI: 10.1117/12.2625829.
  • [13] J. Du, Y. Zong, H. Bao, “Shape adjustment of cable mesh antennas using sequential quadratic programming”, Aerospace Science and Technology, 2013, vol. 30, no. 1, pp. 26-32; DOI: 10.1016/j.ast.2013.06.002.
  • [14] J. Du, H. Bao, C. Cui, “Shape adjustment of cable mesh reflector antennas considering modeling uncertainties”, Acta Astronautica, 2014, vol. 97, pp. 164-171; DOI: 10.1016/j.actaastro.2014.01.001.
  • [15] A.M. Sharabash, B.O. Andrawes, “Application of shape memory alloy dampers in the seismic control of cable-stayed bridges”, Engineering Structures, 2009, vol. 31, no. 2, pp. 607-616; DOI: 10.1016/j.engstruct.2008.11.007.
  • [16] A.S.K. Kwan, S. Pellegrino, “Prestressing a space structure”, AIAA Journal, 1993, vol. 31, no. 10, pp. 1961-1963; DOI: 10.2514/3.11876.
  • [17] N.M. Saeed, A.A.H. Manguri, A.M. Adabar, “Shape and force control of cable structures with minimal actuators and actuation”, International Journal of Space Structures, 2021, vol. 36, no. 3, pp. 241-248; DOI: 10.1177/09560599211045851.
  • [18] S. Krishnan, “Structural design and behavior of prestressed cable domes”, Engineering Structures, 2020, vol. 209, art. ID 110294; DOI: 10.1016/j.engstruct.2020.110294.
  • [19] Y. Xue, Y. Luo, X. Xu, H.-P. Wan, Y. Shen, “A robust method for pre-stress adjustment of cable-strut structures based on sparse regression”, Engineering Structures, 2021, vol. 246, art. ID 112987; DOI: 10.1016/j.engstruct.2021.112987.
  • [20] A.A. Manguri, A.S.K. Kwan, N.M. Saeed, “Adjustment for shape restoration and force control of cable arch stayed bridges”, International Journal of Computational Methods and Experimental Measurements, 2017, vol. 5, no. 4, pp. 514-521; DOI: 10.2495/CMEM-V5-N4-514-521.
  • [21] W. Chen, D. Wang, M. Li, “Static shape control employing displacement-stress dual criteria”, Smart Materials and Structures, 2004, vol. 13, no. 3, pp. 468-472; DOI: 10.1088/0964-1726/13/3/003.
  • [22] J.J. Joo, B. Sanders, T. Johnson, M.I. Frecker, “Optimal actuator location within a morphing wing scissor mechanism configuration”, in Smart Structures and Materials 2006: Modeling, Signal Processing, and Control, vol. 6166. SPIE, 2006, pp. 24-35; DOI: 10.1117/12.658830.
  • [23] A. Sabouni-Zawadzka, A. Zawadzki, “Simulation of a deployable tensegrity column based on the finite element modeling and multibody dynamics simultions”, Archives of Civil Engineering, 2020, vol. 66, no. 4, pp. 543-560; DOI: 10.24425/ace.2020.135236.
  • [24] J. Nocedal, S. Wright, Numerical optimization. New York , USA: Springer Science & Business Media, 2006.
  • [25] L.Y. Shen, G.Q. Li, Y.F. Luo, “Displacement control of prestressed cable structures (in Chinese)”, Journal of Tongji University Natural Science, 2006, vol. 34, no. 3, pp. 291-295.
  • [26] X. Xu, Y.Z. Luo, “Multi-objective shape control of prestressed structures with genetic algorithms”, Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2008, vol. 222, no. 8, pp. 1139-1147; DOI: 10.1243/09544100JAERO394.
  • [27] X. Xu, Y.Z. Luo, “Non-linear displacement control of prestressed cable structures”, Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2009, vol. 223, no. 7, pp. 1001-1007; DOI: 10.1243/09544100JAERO455.
  • [28] G. Senatore, A.P. Reksowardojo, “Force and Shape Control Strategies for Minimum Energy Adaptive Structures”, Frontiers in Built Environment, 2020, vol. 6, art. ID 105; DOI: 10.3389/fbuil.2020.00105.
  • [29] M. Liu, Q. Sun, H. Yu, J. Yang, T. Zhang, “Static and dynamic test analysis of a 12-years old 14 000-ton cable-stayed bridge used swivel construction technology”, Archives of Civil Engineering, 2021, vol. 67, no. 4, pp. 369-381; DOI: 10.24425/ace.2021.138505.
  • [30] E.G. Christoforou, A. Müller, M.C. Phocas, M. Matheou, S. Arnos, “Design and control concept for reconfigurable architecture”, Journal of Mechanical Design, 2015, vol. 137, no. 4, art. ID 042302; DOI: 10.1115/1.4029617.
  • [31] N. Saeed, A. Manguri, S. Abdulkarim, A. Shekha, “Shape Restoration of Deformed Egg-Shaped Single Layer Space Frames”, in 2019 International Conference on Advanced Science and Engineering (ICOASE), Duhok, Kurdistan Region, Iraq. IEEE, 2019, pp. 220-225; DOI: 10.1109/ICOASE.2019.8723714.
  • [32] A. Manguri, N. Saeed, B. Haydar, “Optimal Shape Refurbishment of Distorted Dome Structure with Safeguarding of Member Stress”, in 7th International Engineering Conference “Research&Innovation amid Global Pandemic"(IEC2021), Erbil, Iraq. IEEE, 2021, pp. 90-95; DOI: 10.1109/IEC52205.2021.9476107.
  • [33] N. Saeed, A. Manguri, S. Al-Zahawi, “Optimum Geometry and Stress Control of Deformed Double Layer Dome for Gravity and Lateral Loads”, in 7th International Engineering Conference “Research & Innovation amid Global Pandemic"(IEC2021), Erbil, Iraq. IEEE, 2021, pp. 84-89; DOI: 10.1109/IEC52205.2021.9476094.
  • [34] S. Patnaik, “The integrated force method versus the standard force method”, Computers and Structures, 1986, vol. 22, no. 2, pp. 151-163; DOI: 10.1016/0045-7949(86)90061-1.
  • [35] J.-O. Sperle, K. Olsson, “High strength and ultra high strength steels for weight reduction in structural and safety-related applications”, in 29 th International Symposium on Automotive Technology and Automation, vol. 1, 1996, pp. 115-125.
  • [36] MATLAB, “Constrained Nonlinear Optimization Algorithms”, Mathworks. [Online]. Available: https://www.mathworks.com/help/optim/ug/constrained-nonlinear-optimization-algorithms.html. [Accessed: 12 Mar 2022].
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1104f4fe-ffea-4709-afb9-960803347f58
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.