PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Evaluation of Sewed Thread Consumption of Jean Trousers Using Neural Network and Regression Methods

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Określenie zużycia nici szewnych przy szyciu spodni dżinsowych przy zastosowaniu sztucznych sieci neuronowych i metod regresji
Języki publikacji
EN
Abstrakty
EN
This paper deals with the prediction of the sewing thread consumption of jean trousers using the neural network technique. The neural network results and analysis are discussed and investigated. Indeed the findings show that neural network consumption values give better fitting of experimental results than the ones obtained using regression technique. However, compared to the experimental consumption results, theoretical ones of the sewn jean pants seem widely predictable in the desired field of interest. Among the all parameters studied, statistical analysis results also indicate that five inputs can be considered as influential ones. When classifying these five influential inputs, only three parameters are considered most significant. In fact the thread consumed to sew jean trouser samples remains influenced especially by the thread properties and needle fineness as well. Compared with the regression model, the neural network model gives a more accurate prediction and to a great extent provides the amount of sewing thread.
PL
Praca dotyczy przewidywania zużycia nici szewnych przy szyciu spodni dżinsowych stosując technikę sztucznych sieci neuronowych. Badania wykazują , że wyniki zapotrzebowania nici uzyskane za pomocą sztucznych sieci neuronowych są bardziej zgodne z eksperymentami niż te uzyskane techniką regresji. Przeprowadzając kolejne analizy, określono najbardziej racjonalną strukturę sztucznych sieci neuronowych z pięcioma wejściami i trzema parametrami mającymi najbardziej istotny wpływ na zużycie. Stwierdzono, że zależy ono głównie od właściwości nitki i rodzaju igły. Porównując wyniki otrzymane z zastosowania sztucznych sieci neuronowych z wynikami otrzymanymi za pomocą metody regresji stwierdzono, że pierwsza metoda daje lepsze wyniki.
Rocznik
Strony
91--96
Opis fizyczny
Bibliogr. 35 poz., rys., tab.
Twórcy
autor
  • Textile Engineering Laboratory, University of Monastir, Monastir, Tunisia
autor
  • National Engineering School of Monastir, University of Monastir, Monastir, Tunisia
  • Textile Engineering Laboratory, University of Monastir, Monastir, Tunisia
Bibliografia
  • 1. Amirbayat J, Alagha MJ. Further studies on balance and thread consumption of lockstitch seams. Int. J. Clothing Sci. Technol. 1993; 5: 26-31.
  • 2. Chang-Chiun H, Wen-Hong Y. Fuzzy neural network approach to classifying dyeing defects. Tex. Res. J. 2001; 71: 100-104.
  • 3. Desai JV, Kane CD, Bandyopadhayay B. Neural Networks: An alternative solution for statistical based parameter prediction. Tex. Res. J. 2004; 74: 227-230.
  • 4. Dorrity JL, Olson LH. Thread motion ratio used to monitor sewing machines. Int. J. Clothing Sci. Technol. 1996; 8: 1-6.
  • 5. Ferreira FBN, Grosberg P, Harlock SC. A study of thread tensions on a lockstitch sewing machine – I. Int. J. Clothing Sci. Technol. 1994a; 6: 14-19.
  • 6. Ferreira FBN, Grosberg P, Harlock SC. A study of thread tensions on a lockstitch sewing machine – II. Int. J. Clothing Sci. Technol. 1994b; 6: 26-29.
  • 7. Ferreira FBN, Grosberg P, Harlock SC. A study of thread tensions on a lockstitch sewing machine – III. Int. J. Clothing Sci. Technol. 1994c; 6: 39-42.
  • 8. Galuszynski S. Some Aspects of the Mechanism of Seam Slippage in Woven Fabrics. J. Tex. Inst. 1985: 425-433.
  • 9. Horino T, Miura Y, Ando Y, Sakamoto K. Simultaneous measurement of needle thread tension and check spring motion of lockstitch sewing machine for industrial use. J. Tex. Mach. Soc. J. 1982; 35: T30-T37.
  • 10. Inui S, Shibuya A. Objective Evaluation of Seam Pucker. Int. J. Clothing Sci. Technol. 1992; 4: 53-64.
  • 11. Inui S, Shibuya A. Seam Pucker Simulation, Int. J. Clothing Sci. Technol. 1998; 10: 128-142.
  • 12. Inui S, Okabe H, Yamaraka T. Simulation of Seam Pucker on Two Strips of Fabric Sewn Together. Int. J. Clothing Sci. Technol. 2001; 13: 53-64.
  • 13. Jaouachi B, Louati H, Hellali H. Predicting residual bagging bend height of knitted fabric using fuzzy modelling and neural networks. Autex Res. J. 2010; 10: 110-115.
  • 14. Jaouachi B, Khedher F. Evaluating sewing thread consumption of jean pants using fuzzy and regression methods. J. Tex. Inst., 2013, DOI: 10.1080/00405000.2013.773627.
  • 15. Jaouachi B, Khedher F, Mili F. Consumption of the sewing thread of jean pant using Taguchi design analysis. Autex Res. J. 2012; 12: 81-86.
  • 16. Jaouadi M, Msahli S, Babay A, Zitouni B. Analysis of the modeling methodologies for predicting the sewing thread consumption. Int. J. Clothing Sci. Technol. 2006; 18: 7-18.
  • 17. Kamata Y, Kinoshita R, Ishikawa S, Fujisaki K. Effect of needle thread slipped out of rotating hook on tightening tension of an industrial single-needle lockstitch sewing machine part I. J. Tex. Mach. Soc. J. 1982; 35: T60-T71.
  • 18. Kamata Y, Kinoshita R, Ishikawa S, Fujisaki K. Disengagement of needle thread from rotating hook, effects of its timing on tightening tension, industrial singleneedle lockstitch sewing machine. J. Tex. Mach. Soc. J. 1984; 30, 40-49.
  • 19. Kang TJ, Cho DH, Whang HS. A New Objective Method of Measuring Fabric Wrinkle Using 3-D Projecting Grid Technique. Tex. Res. J. 1999; 6: 261–268.
  • 20. Kang TJ, Park CK, Lee JY. Evaluation of Seam Pucker Using Fractal Geometry. J. Tex. Inst. 1999; 90: 621–636.
  • 21. Kennon WR, Hayes SG. The effects of feed retardation on lockstitch sewing. J. Text. Inst. 2000; 91: 509-522.
  • 22. Khan RA, Hersh SP, Grady PL. Simulation of Needle-Fabric Interactions in Sewing Operations. Tex. Res. J. 1970; 40: 489-498.
  • 23. Milliken GA, Johnson DE. Analysis of Messy Data: Designed Experiments, EditionWadsworth / Lifetime, Van Nostrand Reinhold. New York, 1984, ISBN 10: 053402713X / ISBN 13: 9780534027131, 1, p. 473.
  • 24. Nelson PR. A comparison of sample seizes for the analysis of means and analysis of variances. J. Qual. Tech. 1983; 15: 33-39.
  • 25. O'Dwyer U, Munden DL. A study of the factors effecting the dimensions and thread consumption in 301 seams - part I. Cloth. Res. J. 1975; 3: 3-32.
  • 26. Park CK, Kang TJ. Objective Evaluation of Seam Pucker Using Artificial Intelligence Part One: Geometric Modelling of Seam Pucker. Tex. Res. J. 1999; 69: 735-742.
  • 27. Park CK, Kang TJ. Objective Evaluation of Seam Pucker Using Artificial Intelligence Part Two: Method of Evaluating Seam Pucker. Tex. Res. J. 1999; 69: 835-845.
  • 28. Park CK, Kang TJ. Objective Evaluation of Seam Pucker Using Artificial Intelligence Part Three: Using the Objective Method to Analyze the Effects of Sewing Parameters on Seam Pucker. Tex. Res. J. 1999; 69: 919-924.
  • 29. Droesbeke JJ, Fine J, Sporta G. Plans d’expériences, Applications à l’entreprise. Edition Afnor, Paris, 1997 : 211-278.
  • 30. Goupy J. Plans d’expériences pour surfaces de réponse. Ed. Dunod, France, 1999 : 103-137.
  • 31. Seyam A, El Sheikh A. Mechanics of woven fabric, Part IV: critical review of fabric degree of tightness and its applications. Tex. Res. J. 1994; 64: 653-62.
  • 32. Stylios G, Parsons-Moore R. Seam Pucker Prediction Using Neural Computing. Int. J. Clothing Sci. Technol. 1993; 5: 24-27.
  • 33. Ukponmwan JO, Mukhopadhyay A, Chatterjee KN. Sewing threads. Tex. Prog. Inst. J. 2000; 30: 79-80.
  • 34. Webster J, Laing RM, Niven BE. Effects of Repeated Extension and Recovery on Selected Physical Properties of ISO-301 Stitched Seams, Part I: Load at Maximum Extension and at Break. Tex. Res. J. 1998; 68: 854-864.
  • 35. Webster J, Laing RM, Enlow RL. Effects of Repeated Extension and Recovery on Selected Physical Properties of ISO-301 Stitched Seams, Part II: Theoretical Model. Tex. Res. J. 1998; 68: 881-888
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-11048110-8420-4cba-8480-2bf815b3bcd1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.