PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

An investigation on pyrite floatability using stable micro-nanobubble-assisted flotation

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This study critically examines the impact of micro-nanobubble (MNB)-assisted flotation on pyrite recovery in bulk ore, and clarifies the intricate relationship between pyrite and its associated ore. The physicochemical properties of MNBs and the interaction mechanisms between xanthate collector and pure pyrite mineral were evaluated using advanced analytical techniques, including Dynamic Light Scattering (DLS), Field-Emission Scanning Electron Microscopy coupled with Energy-Dispersive X-ray Spectroscopy (FESEM-EDX), and Ultraviolet-Visible Spectroscopy (UV-Vis), in the absence and the presence of MNBs. MNBs were created through hydrodynamic cavitation, and their characteristics revealed a size increase from 600 nm to 3 μm over 25 days. Notably, the zeta potential measurements indicated an increase from -2.5 to 0 mV at a constant pH of 8, correlating with the geometric mean size of MNBs coarsening from 600 nm to 2-3 μm. The FESEM and EDS analyses disclosed that ultrasonic treatment effectively dispersed ultrafine surface coatings on pyrite particles, increasing iron and sulfur purity by 8% and 6%, respectively, and significantly reducing surface oxygen by 53%. Micro-flotation and batch rougher kinetic flotation experiments were conducted with and without MNBs, leading to a 7% and 8% improvement in recovery for pyrite mono-minerals (-105+53 μm) and its ore (d80=150 μm), respectively. The sorption behavior of sodium isopropyl xanthate (SIPX) collector on the particle surface was also investigated at various concentrations (ca. 10-160 μM) in the presence and absence of stable MNBs and demonstrated that the presence of MNBs resulted in a 1.6-fold increase in collector absorption on the pyrite surface, confirming the findings obtained from micro-flotation. Moreover, adsorption behavior is up to 1.3 times compared to the scenario without MNBs. The adsorption process was controlled by a pseudo-second-order model, indicating a chemical sorption mechanism.
Rocznik
Strony
art. no. 193611
Opis fizyczny
Bibliogr. 57 poz., rys., tab., wykr.
Twórcy
  • Faculty of Mining, Petroleum & Geophysics Engineering, Shahrood University of Technology, Shahrood, P.O. Box: 3619995161, Iran
autor
  • Faculty of Mining, Petroleum & Geophysics Engineering, Shahrood University of Technology, Shahrood, P.O. Box: 3619995161, Iran
  • Department of Geoscience and Petroleum, Faculty of Engineering, Norwegian University of Science and Technology, 7031 Trondheim, Norway
  • Maelgwyn Mineral Services Ltd, Ty Maelgwyn, 1A Gower Road, Cathays, Cardiff, CF24 4PA, United Kingdom
Bibliografia
  • AGORHOM, E.A., SKINNER, M., ZANIN, M., 2014. Diethylenetriamine depression of Cu-activated pyrite hydrophobised by xanthate. Miner. Eng. 57, 36-42.
  • AHMADI, R., KHODADADI, D.A., ABDOLLAHY, M., FAN, M., 2014. Nano-microbubble flotation of fine and ultrafine chalcopyrite particles. Int. J. Min. Sci. Technol. 24, 559-566.
  • ALLARD, O., LOPEZ, M., DEMERS, I., COUDERT, L., 2022. Gold recovery from sulfide concentrates produced by environmental desulfurization of mine tailings. Minerals 12, 1011.
  • ALTUN, N.E., GÜLER, T., AKDEMIR, Ü., 2010. Pyrite flotation–a review. In Proceedings of the XIIth International Mineral Processing Symposium, Cappadocia-Nevşehir, Turkey, 6-8 October, 295-303.
  • AMROLLAHI, A., MASSINAEI, M., MOGHADDAM, A.Z., 2019. Removal of the residual xanthate from flotation plant tailings using bentonite modified by magnetic nano-particles. Miner. Eng. 134, 142-55.
  • AVILA-MARQUEZ, D.M., BLANCO-FLORES, A., REYES-DOMINGUEZ, I.A., TOLEDO-JALDIN, H.P., AGUILAR-CARRILLO, J., CRUZ-GAONA, R., 2020. Copper sulfide flotation under acidic conditions using a xanthogen formate compound as collector: Adsorption studies and experimental design approach. Colloids Surf. A: Physicochem. Eng. Asp. 585, 124032.
  • AZEVEDO, A., ETCHEPARE, R., CALGAROTO, S., RUBIO, J., 2016. Aqueous dispersions of nanobubbles: Generation, properties and features. Miner. Eng. 94, 29-37.
  • BILAL, M., PARK, I., HORNN, V., HASSAN, F.U., JEON, S., HIROYOSHI, N., 2022. The challenges and prospects of recovering fine copper sulfides from tailings using different flotation techniques: A review. Minerals 12, 586.
  • BUI, T.T., NGUYEN, D.C., HAN, M., 2019. Average size and zeta potential of nanobubbles in different reagent solutions. J. Nanopart. Res. 21, 73.
  • CAO, M., LIU, Q., 2006. Reexamining the functions of zinc sulfate as a selective depressant in differential sulfide flotation-The role of coagulation. J. Colloid. Interface. Sci. 301, 523-531.
  • CALGAROTO, S., AZEVEDO, A., RUBIO, J., 2016. Separation of amine-insoluble species by flotation with nano and microbubbles. Miner. Eng. 89, 24-29.
  • CHENG, G., ZHANG, M.N., LI, Y.L., LAU, EV., 2023. Improving micro-fine mineral flotation via micro/nano technologies. Sep. Sci. Technol. 58, 520-537.
  • CHEN, B., ZENG, B., 2017. Characteristics of micro-interface adsorption kinetics between sediments and Cu ions. Int. J. Sediment Res. 32(1), 82-89.
  • DENG, Z., CHENG, W., TANG, Y., TONG, X., LIU, Z., 2021. Adsorption mechanism of copper xanthate on pyrite surfaces. Physicochemical Problems of Mineral Processing. 57, 46-60.
  • DUNNE, R., 2005. Flotation of gold and gold-bearing ores. Chapter 14, Developments in mineral processing. Eds. ADAMS, M.D., WILS, B.A. Elsevier, 15, 309-44.
  • ELMAHDY, A.M., MIRNEZAMI, M., FINCH, J.A., 2008. Zeta potential of air bubbles in presence of frothers. Int. J. Miner. Process. 89, 40-43.
  • FENG, Q., YANG, S., WEN, S., WANG, H., ZHAO, W., HAN, G., 2022. Flotation of copper oxide minerals: A review. Int. J. Min. Sci. Technol. 32, 1351-1364.
  • FORGHANI, M., AZIZI, A., LIVANI, M.J., KAFSHGARI, L.A., 2020. Adsorption of lead (II) and chromium (VI) from aqueous environment onto metal-organic framework MIL-100 (Fe): Synthesis, kinetics, equilibrium and thermodynamics. J. Solid State Chem. 291,121636.
  • FORREST, K., YAN, D., DUNNE, R., 2001. Optimisation of gold recovery by selective gold flotation for copper-gold-pyrite ores. Miner. Eng. 14, 227-241.
  • GHIASI, E., MALEKZADEH, A., 2020. Removal of various textile dyes using LaMn(Fe)O3 and LaFeMn0.5O3 nanoperovskites; RSM optimization, isotherms and kinetics studies. J. Inorg. Organomet. Polym. 30, 2789–2804.
  • GU, G.H., SUN, X.J., LI, J.H., HU, Y.H., 2010. Influences of collector DLZ on chalcopyrite and pyrite flotation. J. Cent. South Univ. 17, 285-288.
  • HAN, C., WEI, D., GAO, S., ZAI, Q., SHEN, W., 2020. Adsorption and desorption of butyl xanthate on chalcopyrite. J. Mater. Res. Technol. 9, 12654-60.
  • HEIDARI, H., AZIZI, A., HASSANZADEH, A., 2024. A New insight into the mechanism of MNB-assisted flotation of copper: A link between chalcopyrite and its-bearing bulk ore. Mineral Engineering. 216, 108882.
  • HASSANZADEH, A., GHOLAMI, H., ÖZKAN, S.G., NIEDOBA, T., SUROWIAK, A., 2021. Effect of power ultrasound on wettability and collector-less floatability of chalcopyrite, pyrite and quartz. Minerals 11, 48.
  • HASSANZADEH, A., HASANZADEH, M., 2016. A study on selective flotation in low and high pyritic copper sulphide ores. Sep. Sci. Technol. 51, 2214-2224.
  • HASSANZADEH, A., KARAKAS, F., 2017. The kinetics modeling of chalcopyrite and pyrite, and the contribution of particle size and sodium metabisulfite to the flotation of copper complex ores. Part. Sci. Technol. 15, 455-61.
  • HE, H., XIAN, H., ZHU, J., TAN, W., WU, X., YANG, Y., LI, S., QIU, K., ZHU, R., HENRY TENG, H., 2023. Evaluating the physicochemical conditions for gold occurrences in pyrite. Am. Min. 108, 211-216.
  • JIANG, K., HAN, Y., LIU, J., WANG, Y., GE, W., ZHANG, D., 2023. Experimental and theoretical study of the effect of pH level on the surface properties and floatability of pyrite. Appl. Surf. Sci. 615, 156350.
  • KHOSHDAST, H., HASSANZADEH, A., KOWALCZUK, P.B., FARROKHPAY, S., 2023. Characterization techniques of flotation frothers-A review. Miner. Process. Extr. Metall. Rev. 44, 77-101.
  • KRUSZELNICKI, M., HASSANZADEH, A., LEGAWIEC, K.J., POLOWCZYK, I., KOWALCZUK, P.B, 2022. Effect of ultrasound pre-treatment on carbonaceous copper-bearing shale flotation. Ultrason. Sonochem. 84, 105962.
  • KYZAS, G.Z., MITROPOULOS, A.C., MATIS, K.A., 2021. From microbubbles to nanobubbles: Effect on flotation. Processes 9, 1287.
  • MA, F., TAO, D., 2022. A study of mechanisms of nanobubble-enhanced flotation of graphite. Nanomaterials 12, 3361.
  • NAZARI, S., ZHOU, A., HASSANZADEH, A., LI, J., HE, Y., BU, X., KOWALCZUK, P.B., 2022. Influence of operating parameters on nanobubble-assisted flotation of graphite. J. Mater. Res. Technol. 20, 3891-3904.
  • NAZARI, S., HASSANZADEH, A., 2020. The effect of reagent type on generating bulk sub-micron (nano) bubbles and flotation kinetics of coarse-sized quartz particles. Powder Technol. 374, 160-171.
  • NAZARI, S., HASSANZADEH, A., KOSHDAST, H., KOWALCZUK, P.B., 2022. Recent developments in generation, detection and application of nanobubbles in flotation. Minerals 12, 462.
  • NIKOUEI MAHANI, A., KARAMOOZIAN, M., JAHANI CHEGENI, M., MAHMOODI MEYMAND, M., 2024. Effect of stable nano-microbubbles on sulfide copper flotation and reduction of chemicals dosage. JME 15, 261-283.
  • OLSZOK, V., RIVAS-BOTERO, J., WOLLMANN, A., BENKER, B., WEBER, A.P., 2020. Particle-induced nanobubble generation for material-selective nanoparticle flotation. Colloids Surf. A: Physicochem. Eng. Asp. 592, 124576.
  • OTSUKI, A., ZHAO, Y., 2018. UV-Vis Study of mixed collector adsorption on pyrite towards the better understanding of the adsorption mechanism. Curr. Work. Miner. Process. 1, 13-20.
  • OZUN, S., HASSAS, B,V., MILLER, J,D., 2019. Collectorless flotation of oxidized pyrite. Colloids Surf. A: Physicochem. Eng. Asp. 561, 349-356.
  • PANAYOTOV, V., PANAYOTOVA M., 2023. Technology for increasing the precious metals content in copper concentrate obtained by flotation. Physicochem. Probl. Miner. Process. 59.
  • POURKARIMI, B., REZAI, M., NOPARAST, A.V., NGUYEN, S.C., 2021. Proving the existence of nanobubbles produced by hydrodynamic cavitation and their significant effects in powder flotation. Adv. Powder Technol. 32, 1810-1818.
  • POURKARIMI, Z., REZAIE, B., NOAPARAST, M., 2018. Nano bubbles effect on the mechanical flotation of phosphate ore fine particles. Physicochem. Probl. Miner. Process. 54, 278-292.
  • QIN, H., GUO, X.Y., TIAN, Q.H., ZHANG, L., 2021. Recovery of gold from refractory gold ores: Effect of pyrite on the stability of the thiourea leaching system. Int. J. Miner. Metall. Mater. 28, 956-964.
  • SHADMAN, M., HOSSEINI, M.R., TAGHAVI ZINJENAB, Z., AZIMI, E., 2023. Significant reduction in collector consumption by implementing ultrafine bubbles in lead and zinc rougher flotation. Powder Technol. 414, 118096.
  • SOBHY, A., TAO, D., 2013. High-efficiency nanobubble coal flotation. Int. J. Coal Prep. Utilization, 33, 242-256.
  • WANG, X.H., FORSSBERG, K.E., 1991. Mechanisms of pyrite flotation with xanthates. Int. J. Miner. Process. 33, 275-290.
  • SEYEDI, M., ABEDI, M., BAHROUDI, A., FERDOWSI, H., 2023. Geochemical prospectivity of Cu-mineralization through concentration-number fractal modeling and prediction-area plot: a case study in East Iran. Int. J. Min. Geo-Eng. 57, 159-169.
  • TAGHAVI ZINJENAB, Z., AZIMI, E., SHADMAN, M., HOSSEINI, M.R., 2024. Maximization of ultrafine poly-mineral ore sequential flotation recovery through synergistic effect of conventional and nano-size bubble combination. J. Mol. Liq. 401, 124698.
  • TAGHAVI, F., NOAPARAST, M., POURKARIMI, Z., NAKHAEI, F., 2022. Comparison of mechanical and column flotation performances on recovery of phosphate slimes in presence of nano-microbubbles. J. Cent. South Univ. 29, 102-115.
  • TAO, D., WU, Z., SOBHY, A., 2021. Investigation of nanobubble enhanced reverse anionic flotation of hematite and associated mechanisms. Powder Technol. 379, 12-25.
  • TAO, D., 2022. Recent advances in fundamentals and applications of nanobubble enhanced froth flotation: A review. Miner. Eng. 183, 107554.
  • ULATOWSKI, K., SOBIESZUK, P., MROZ, T., 2019. Stability of nanobubbles generated in water using porous membrane system. Chem, Eng. Process.: Process Intensif. 136, 62-71.
  • WEBER, W.J., MORRIS, JC., 1963. Kinetics of adsorption on carbon from solution. J. Sanit. Eng. Div. 89, 31-59.
  • WU, Z., TAO, D., MA, G., 2023. New insights into mechanisms of pyrite flotation enhancement by hydrodynamic cavitation nanobubbles. Mineral Engineering. 201, 108222.
  • YENIAL-ARSLAN, M., JEFFERSON, M., CURTIS-MORAR, C., 2023. Pathway to prediction of pyrite floatability from copper ore geological domain data. Minerals. 13, 801.
  • ZENG, C., HUANG, K., WANG, C., GONG, Y., HUANG, N., HUANG, X., YANG, H., ZOU, S., ZHONG, H., 2023. Adsorption kinetic studies of octyl hydroxamic acid on galena surface. Miner. Eng. 198.
  • ZHOU, S., LI, Y., NAZARI, S., BU, X., HASSANZADEH, A., 2022. An assessment of the role of combined bulk micro-and nano-bubbles in quartz flotation. Minerals 12, 944.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1102d9af-18ad-4443-a93f-87003a1f088e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.