PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effects of different irrigation strategies on soil water, salt, and nitrate nitrogen transport

Identyfikatory
Warianty tytułu
PL
Wpływ różnych strategii nawadniania na transport wody glebowej, soli i azotu azotanowego w glebie
Języki publikacji
EN
Abstrakty
EN
Intermittent irrigation has attracted much attention as a water-saving technology in arid and semi-arid regions. For understanding the effect of intermittent irrigation on water and solute storage varied from irrigation amount per time (IRA), irrigation application frequency (IRAF), irrigation intervals (IRI) and even soil texture (ST), intermittent irrigation experiment was carried out in 33 micro-plots in Inner Mongolia, China. The experiment results were used for the calibration and validation of HYDRUS-1D software. Then 3 ST (silty clay loam, silty loam, and silty clay), 5 IRA (2, 4, 6, 8, and 10 cm), 4 IRAF (2, 3, 4, and 5 times) and 4 IRI (1, 2, 3, and 4 days) were combined and total 240 scenarios were simulated by HYDRUS-1D. Analysis of variance (ANVOA) of simulated results indicated that ST, IRA, and IRAF had significant effect on salt and nitrate nitrogen (NO3−-N) storage of 0-40 cm depth soil in intermittent irrigation while only ST affected soil water storage obviously. Furthermore, salt leaching percentage (SLP) and water use efficiency (WUE) of 0-40 cm depth were calculated and statistical prediction models for SLP were established based on the ANOVA using multiple regression analysis in each soil texture. Then constraint conditions of soil water storage (around field capacity), salt storage (smaller than 168 mg·cm−2), WUE (as large as possible) in 0-40 cm depth and total irrigation water amount (less than 25 cm) were proposed to find out the optimal intermittent irrigation strategies. Before sowing, the optimal irrigation strategy for silty clay loam soil was 6 cm IRA, 3 times IRAF, and 2 days IRI respectively. For silty loam and silty clay soils, IRA, IRAF, and IRI were 8 cm, 3 times, and 2 days respectively.
PL
Nawadnianie przerywane zwraca uwagę jako technologia oszczędnego użycia wody w regionach suchych i półpustynnych. Dla zrozumienia wpływu parametrów nawadniania przerywanego, takich jak czas (IRA), częstotliwości stosowania nawadniania (IRAF), odstępy czasu nawadniania (IRI), a także struktury gleby (ST) na magazynowanie wody i substancji rozpuszczonych, przeprowadzono eksperyment przerywanego nawadniania na 33 mikropoletkach w Mongolii Wewnętrznej, w Chinach. Wyniki doświadczeń użyto do kalibracji i walidacji oprogramowania HYDRUS-1D. Następnie 3 ST (mulisty piasek gliniasty, muliste iły i gliny pylaste), 5 IRA (2, 4, 6, 8 i 10 cm), 4 IRAF (2, 3, 4 i 5 razy) i 4 IRI (1, 2, 3 i 4 dni) połączono ogółem w 240 scenariuszy symulowanych przez HYDRUS-1D. Analiza wariancji (ANVOA) symulowanych wyników wykazała, że ST, IRA i IRAF miały znaczący wpływ na sól i azot azotanowy (NO3–-N), składowane na głębokości 0-40 cm gleby w nawadnianiu przerywanym, podczas gdy ST wpływał tylko na magazynowanie wody w glebie. Ponadto, procentowe ługowanie soli (SLP) i efektywność wykorzystania wody (WUE) zostały obliczone dla głębokości 0-40 cm i statystyczne modele predykcyjne dla SLP zostały ustalone na podstawie analizy wariancji i za pomocą analizy regresji wielokrotnej w każdej strukturze gleby. Aby określić optymalną strategię sporadycznego nawadniania, zaproponowano ograniczenie warunków magazynowania wody w glebie (około pojemności polowej), magazynowania soli (mniejsze niż 168 mg · cm–2), WUE (jak największa) w 0-40 cm głębokości i całkowitej ilości wody do nawadniania (mniej niż 25 cm). Przed siewem optymalna strategia nawadniania gleb mulistych gliniastych zakładała odpowiednio 6 cm IRA, 3 razy IRAF i 2 dni IRI. Dla gliny pylastej i ilastych gleb gliniastych założono IRA, IRAF i IRI odpowiednio 8 cm, 3 razy i 2 dni.
Rocznik
Strony
589--609
Opis fizyczny
Bibliogr. 41 poz., wykr., rys., tab.
Twórcy
autor
  • State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan 430072, China, phone +8602768774363
autor
  • State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan 430072, China, phone +8602768774363
autor
  • State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan 430072, China, phone +8602768774363
autor
  • State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan 430072, China, phone +8602768774363
Bibliografia
  • [1] Mailhol J, Ruelle P, Nemeth I. Impact of fertilisation practices on nitrogen leaching under irrigation. Irrigation Sci. 2001;20(3):139-147. DOI: 10.1007/s002710100038.
  • [2] Gärdenäs A, Hopmans J, Hanson B, Šimůnek J. Two-dimensional modeling of nitrate leaching for various fertigation scenarios under micro-irrigation. Agr Water Manage. 2005;74(3):219-242. DOI: 10.1016/j.agwat.2004.11.011.
  • [3] Feng ZZ, Wang XK, Feng ZW. Soil N and salinity leaching after the autumn irrigation and its impact on groundwater in Hetao Irrigation District, China. Agr Water Manage. 2005;71(2):131-143. DOI: 10.1016/j.agwat.2004.07.001.
  • [4] Siyal AA, Bristow KL, Simunek J. Minimizing nitrogen leaching from furrow irrigation through novel fertilizer placement and soil surface management strategies. Agr Water Manage. 2012;115:242-251. DOI: 10.1016/j.agwat.2012.09.008.
  • [5] Heffer P. Assessment of fertilizer use by crop at the global level. Paris: International Fertilizer Industry Association. http://www.fertilizer.org/imis20/images/Library_Downloads/AgCom.13.39%20-%20FUBC%20assessment%202010.pdf?WebsiteKey=411e9724-4bda-422f-abfc-8152ed74f306&=404%3bhttp%3a%2f%2fwww.fertilizer.org%3a80%2fen%2fimages%2fLibrary_Downloads%2fAgCom.13.39+-+FUBC+assessment2010.pdf, 2010.
  • [6] Ritter W. Nitrate leaching under irrigation in the United States - a review. J Environ Sci Health A. 1989;24(4):349-378. DOI: 10.1080/10934528909375486.
  • [7] Min J, Zhang HL, Shi WM. Optimizing nitrogen input to reduce nitrate leaching loss in greenhouse vegetable production. Agr Water Manage. 2012;111:53-59. DOI: 10.1016/j.agwat.2012.05.003.
  • [8] Duan R, Fedler CB. Nitrogen and salt leaching from two typical Texas turf soils irrigated with degraded water. Environ Eng Sci. 2011;28(11):787-793. DOI: 10.1089/ees.2011.0196.
  • [9] Ramos TB, Castanheira NL, Goncalves MC, Fernandes ML, Januario MI, Lourenco ME, et al. Effect of combined use of brackish water and nitrogen fertilizer on biomass and sugar yield of sweet sorghum. Pedosphere. 2012;22(6):785-794. DOI: 10.1016/j.jhydrol.2011.07.016.
  • [10] Zeng W, Xu C, Wu J, Huang J. Soil salt leaching under different irrigation regimes: HYDRUS-1D modelling and analysis. J Arid Land. 2014;6(1):44-58. DOI: 10.1007/s40333-013-0176-9.
  • [11] Gun Won J, Soo Choi J, Phil Lee S, Ho Son S, Ok Chung S. Water saving by shallow intermittent irrigation and growth of rice. Plant Prod Sci. 2005;8(4):487-492. DOI: 10.1626/pps.8.487.
  • [12] Dahab M, Mustafa M, Rahman HA. Intermittent evaporation, moisture distribution, and salt redistribution through saline-sodic clay soil as affected by irrigation frequency and quantity. Soil Sci. 1988;146(3):168-175. DOI: 10.1097/00010694-198809000-00004.
  • [13] Al-Sibai M, Adey M, Rose D. Movement of solute through a porous medium under intermittent leaching. Eur J Soil Sci. 1997;48(4):711-725. DOI: 10.1111/j.1365-2389.1997.tb00571.x.
  • [14] Borojeni BH, Salehi F. Effect of continuous and intermittent irrigation methods on rice (cv. Koohrang) yield. Arch Agron Soil Sci. 2013;59(7):947-954. DOI: 10.1080/03650340.2012.697994.
  • [15] Tan XZ, Shao DG, Liu HH, Yang FS, Xiao C, Yang HD. Effects of alternate wetting and drying irrigation on percolation and nitrogen leaching in paddy fields. Paddy Water Environ. 2013;11(1-4):381-395. DOI: 10.1007/s10333-012-0328-0.
  • [16] Ramos TB, Šimůnek J, Gonçalves MC, Martins JC, Prazeres A, Castanheira NL, et al. Field evaluation of a multicomponent solute transport model in soils irrigated with saline waters. J Hydrol. 2011;407(1-4):129-144. DOI: 10.1016/j.jhydrol.2011.07.016.
  • [17] Sepaskhah AR, Tafteh A. Yield and nitrogen leaching in rapeseed field under different nitrogen rates and water saving irrigation. Agr Water Manage. 2012;112:55-62. DOI: 10.1016/j.agwat.2012.06.011.
  • [18] Simunek J, Van Genuchten MT, Sejna M. HYDRUS: Model use, calibration, and validation. Trans ASABE. 2012;55(4):1261-1274.
  • [19] Van Genuchten MT. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci Soc Am J. 1980;44(5):892-898.
  • [20] Mualem Y. A new model for predicting the hydraulic conductivity of unsaturated porous media. Water Resour Res. 1976;12(3):513-522. DOI: 10.1029/WR012i003p00513.
  • [21] Schaap MG, Leij FJ, Van Genuchten MT. ROSETTA: a computer program for estimating soil hydraulic parameters with hierarchical pedotransfer functions. J Hydrol. 2001;251(3-4):163-176. DOI: 10.1016/S0022-1694(01)00466-8.
  • [22] Chen C, Ren T, Hu K, Li B, Wang Y. Estimation of soil clay content using hygroscopic water content at an arbitrary humidity. Soil Sci Soc Am J. 2014;78(1):119-124. DOI: 10.2136/sssaj2013.06.0247.
  • [23] Nash J, Sutcliffe JV. River flow forecasting through conceptual models part I - A discussion of principles. J Hydrol. 1970;10(3):282-290. DOI: 10.1016/0022-1694(70)90255-6.
  • [24] Waller RA, Duncan DB. A Bayes rule for the symmetric multiple comparisons problem. J Am Stat Assoc. 1969;64(328):1484-1503. DOI: 10.1007/BF02479820.
  • [25] Katerji N, Van Hoorn J, Hamdy A, Mastrorilli M. Salt tolerance classification of crops according to soil salinity and to water stress day index. Agr Water Manage. 2000;43(1):99-109. DOI: 10.1016/S0378-3774(99)00048-7.
  • [26] Shi D, Sheng Y. Effect of various salt-alkaline mixed stress conditions on sunflower seedlings and analysis of their stress factors. Environ Exp Bot. 2005;54(1):8-21. DOI: 10.1016/j.envexpbot.2004.05.003.
  • [27] Kiggundu N, Migliaccio KW, Schaffer B, Li Y, Crane JH. Water savings, nutrient leaching, and fruit yield in a young avocado orchard as affected by irrigation and nutrient management. Irrigation Sci. 2012;30(4):275-286. DOI: 10.1007/s00271-011-0280-6.
  • [28] Nachabe MH, Ahuja LR, Butters G. Bromide transport under sprinkler and flood irrigation for no-till soil condition. J Hydrol. 1999;214(1-4):8-17. DOI: 10.1016/S0022-1694(98)00222-4.
  • [29] Behera S, Panda R. Effect of fertilization and irrigation schedule on water and fertilizer solute transport for wheat crop in a sub-humid sub-tropical region. Agr Ecosyst Environ. 2009;130(3):141-155. DOI: 10.1016/j.agee.2008.12.009.
  • [30] Mermoud A, Tamini TD, Yacouba H. Impacts of different irrigation schedules on the water balance components of an onion crop in a semi-arid zone. Agr Water Manage. 2005;77(1-3):282-295. DOI: 10.1016/j.agwat.2004.09.033.
  • [31] Mushtaq S, Dawe D, Lin H, Moya P. An assessment of the role of ponds in the adoption of water-saving irrigation practices in the Zhanghe Irrigation System, China. Agr Water Manage. 2006;83(1):100-110. DOI: 10.1016/j.agwat.2005.10.004.
  • [32] Chowdary V, Rao N, Sarma P. A coupled soil water and nitrogen balance model for flooded rice fields in India. Agr Ecosyst Environ. 2004;103(3):425-441. DOI: 10.1016/j.agee.2003.12.001.
  • [33] Buresh R, Castillo E, De Datta S. Nitrogen losses in puddled soils as affected by timing of water deficit and nitrogen fertilization. Plant Soil. 1993;157(2):197-206. DOI: 10.1007/BF00011048.
  • [34] Gerke H, Genuchten MV. A dual-porosity model for simulating the preferential movement of water and solutes in structured porous media. Water Resour Res. 1993;29(2):305-319. DOI: 10.1029/92WR02339.
  • [35] Bouchard D, Wood A, Campbell M, Nkedi-Kizza P, Rao P. Sorption nonequilibrium during solute transport. J Contam Hydrol. 1988;2(3):209-223. DOI: 10.1016/0169-7722(88)90022-8.
  • [36] Sun A, Zhu S, Guo Y, Zhang Z. Jensen model and modified Morgan model for rice water-fertilizer production function. Procedia Engineering. 2012;28:264-269. DOI: 10.1016/j.proeng.2012.01.717.
  • [37] Lenferink KO, Van Loon A, Van Huijgevoort M, Van Lanen H. Comparing low moisture availability and relative crop yields on the pan-European scale using the FAO water production function. Drought: Research and Science-Policy Interfacing. 2014: 105. DOI: 0.1201/b18077-18.
  • [38] Bower C, Ogata G, Tucker J. Rootzone salt profiles and alfalfa growth as influenced by irrigation water salinity and leaching fraction. Agron J. 1969;61(5):783-785. DOI: 10.2134/agronj1969.00021962006100050039x.
  • [39] Da Silva VDPR, Da Cunha Campos JHB, De Azevedo PV. Water-use efficiency and evapotranspiration of mango orchard grown in northeastern region of Brazil. Sci Hortic-Amsterdam. 2009;120(4):467-472. DOI: 10.1016/j.scienta.2008.12.005.
  • [40] Migliaccio KW, Schaffer B, Crane JH, Davies FS. Plant response to evapotranspiration and soil water sensor irrigation scheduling methods for papaya production in south Florida. Agr Water Manage. 2010;97(10):1452-1460. DOI: 10.1016/j.agwat.2010.04.012.
  • [41] Selim T, Bouksila F, Berndtsson R, Persson M. Soil water and salinity distribution under different treatments of drip irrigation. Soil Sci Soc Am J. 2013;77(4):1144-1156. DOI: 10.2136/sssaj2012.0304.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1100af04-808f-4267-9a1e-f93d18690780
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.