PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Influence of the method of numerical modelling of the connections of the roof truss and vaults with the walls of historic masonry structures on local stress distribution

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Wpływ sposobu numerycznego modelowania połączeń więźby dachowej i sklepień ze ścianami zabytkowych obiektów murowych na lokalny rozkład naprężeń
Języki publikacji
EN
Abstrakty
EN
The work concerns the influence of the method of numerical modelling of the connections of the roof truss and vaults with the walls of historic masonry objects structures on the local stress distribution in the walls. At the outset, the need to search for rational modelling was justified due to the large size of the calculation models and the erroneous results obtained with oversimplification of the model. Four methods of modelling the connections between the walls and roof truss and vaults were analysed. The first method was to describe the elements of walls and foundations as solid elements, the ribs of the vaults and the roof truss as beam elements, and the vaulting webs as shell elements. The remaining methods 2-4 describe the walls as shell elements. In places where the walls join with the roof truss and vaults, fictitious/fictional elements in the form of rigid horizontally-oriented shells were used in model No. 2. In model No. 3, fictitious rigid horizontally-oriented shell elements in addition to local rigid vertically-oriented shells were used, while in model No. 4, only fictitious rigid vertically-oriented shell elements with stepwise decreasing protrusions were introduced. The best solution in terms of local stress distribution turned out to be the description of connections with fictitious shell elements in the case of model No. 4. This approach slightly increases the number of unknowns, and makes the results of stresses in the connection areas realistic in relation to full modelling with solid finite elements.
PL
Praca dotyczy wpływu sposobu numerycznego modelowania połączeń więźby dachowej i sklepień ze ścianami zabytkowych obiektów murowych na lokalny rozkład naprężeń w ścianach. Na wstępie uzasadniono potrzebę poszukiwań racjonalnego modelowania z uwagi na duże rozmiary modeli obliczeniowych lub błędnych wyników przy zbytnich uproszczeniach modelu. Przedstawiono aktualnie stosowane sposoby modelowania, w tym stosowanie sztywnych elementów skończonych między nieprzecinającymi się osiami konstrukcyjnymi elementów. Przeanalizowano cztery sposoby modelowania połączeń więźby dachowej i sklepień ze ścianami. Pierwszy sposób to opisanie elementów ścian i fundamentów elementami bryłowymi, żeber sklepień i więźby dachowej elementami belkowymi, a wysklepek sklepień elementami powłokowymi. Pozostałe sposoby 2-4 to opisanie ścian elementami powłokowymi. W miejscach połącznia ścian z więźbą dachową i ze sklepieniami w modelu No. 2 zastosowano fikcyjne elementy w postaci sztywnych powłok zorientowanych poziomo. W modelu No. 3 również wprowadzono fikcyjne sztywne powłoki poziome oraz lokalnie dodatkowo sztywne powłoki zorientowane pionowo, natomiast w modelu No. 4 wprowadzono tylko fikcyjne sztywne pionowe elementy powłokowe o skokowo zmiennym wysięgu. Najlepszym rozwiązaniem w zakresie rozkładu lokalnych naprężeń okazał się opis połączeń fikcyjnymi elementami powłokowymi w przypadku modelu No. 4. Takie podejście niewiele zwiększa liczbę niewiadomych, a urealnia wyniki naprężeń w rejonach połączeń w stosunku do pełnego modelowania bryłowymi elementami skończonymi.
Rocznik
Strony
127--145
Opis fizyczny
Bibliogr. 36 poz., il., tab.
Twórcy
  • Bialystok University of Technology, Faculty of Civil Engineering and Environmental Sciences, Bialystok, Poland
  • Energoprojekty sp. z o. o., Bialystok, Poland
  • Bialystok University of Technology, Faculty of Civil Engineering and Environmental Sciences, Bialystok, Poland
Bibliografia
  • [1] M. Betti, A. Vignoli, “Numerical assessment of the static and seismic behaviour of the basilica of SantaMaria all’Impruneta (Italy)”, Construction and Building Materials, 2011, vol. 25, pp. 4308-4324; DOI: 10.1016/j.conbuildmat.2010.12.028.
  • [2] P. Roca, L. Pellegrini, E. Oñate, A. Hanganu, “Analysis of the structure of gothic cathedrals application to Barcelona cathedral”, in Structural analysis of historical constructions II, Possibilities of numerical and experimental techniques, SAHC 1998 2nd International Seminar on Structural Analysis of Historical Constructions, 4-6 November 1998, Barcelona, Spain. 1998, pp. 231-258.
  • [3] C.Y. Lin, C. L. Kuo, “Behaviour of shear wall with opening”, in Proceedings of Ninth World Conference on Earthquake Engineering, 2-9 August 1988, Tokyo-Kyoto, Japan. 1988, pp. 535-540.
  • [4] M. Zając, “Influence of the new doors opening size and their location on the modification of stiffness in typical medium-height load-bear walls”, Zeszyty Naukowe Politechniki Śląskiej. Budownictwo, 2008, vol. 113, pp. 375-382 (in Polish).
  • [5] M. Corradi, G. Castori, A. Borri, “A New Method for Strengthening Tiled Vaults: Reinforced Catalan Vaulting”, in Proceedings of the 2014: 9th International Masonry Conference 2014, IMC 2014, 7-9 July 2014, Guimaraes, Portugal. 2014, pp. 1-12.
  • [6] A. Serafini, C. Gonzalez Longo, “Seventeenth and eighteenth century timber roof structures in Scotland: design, pathologies and conservation”, in Proceedings of the 2016: 10th International Conference on Structural Analysis of Historical Constructions, SAHC 2016, 13-5 September 2016, Leuven, Belgium. CRC Press, 2016, pp. 1-8.
  • [7] P.S. Marseglia, F. Micelli, M.A. Aiello, “Analysis of Equivalent Diaphragm Vault Structures in Masonry Construction under Horizontal Forces”, Heritage, 2020, vol. 3, pp. 989-1017; DOI: 10.3390/heritage3030054.
  • [8] F. Alemi, F. Nateghi-Alahi, P. Homami, M. Akbarian, “The vulnerability assessment and seismic rehabilitation of the historical Malek Zouzan Mosque”, in Proceedings of the 2012: 15th World Conference on Earthquake Engineering, 15 WCEE LISBOA 2012, Lizbona, Portugal. 2012, pp. 1-9.
  • [9] S.J. Pantazopoulou, “State of the art report for the analysis methods for unreinforced masonry heritage structures and monuments”. [Online]. Available: https://ecpfe.oasp.gr/sites/default/files/files/pantazopoulou.pdf. [Accessed: 20 Jan. 2022].
  • [10] Z. Borowiec, “Calculation of node forces in the elements of a three-dimensional wide-column-frame”, Archiwum Inżynierii Lądowej, 1972, vol. 18, no. 1, pp. 88-101 (in Polish).
  • [11] Ł. Drobiec, R. Jasiński, A. Piekarczyk, Masonry structures according to Eurocode 6 and related standards, vol. 2. Warszawa: Wydawnictwo Naukowe PWN, 2014 (in Polish).
  • [12] J. Heyman, “The stone skeleton”, International Journal of Solids and Structures, 1966, vol. 2, no. 2, pp. 249-279; DOI: 10.1016/0020-7683(66)90018-7.
  • [13] Y. Endo, “Modelling and Structural Analysis of historical masonry systems including vaulted structure”, PhD thesis, Universitat Politècnica de Catalunya Departament d´Enginyeria de la Construcció, Spain, 2015.
  • [14] P. Roca, A. Andreu, L. Gil, “Limit Analysis of Masonry Construction by 3D Funicular Modelling”, in Structural Analysis of Historical Construction, Possibilities of numerical and experimental techniques: Proceedings of the 5th International Conference New Delhi, 6-8 November 2006, New Delhi, India. 2006, pp. 1135-1142.
  • [15] R.B. Heywood, Photoelasticity for Designers. International Series of Monographs in Mechanical Engineering, Oxford: Pergamon Press, 1969.
  • [16] P. Roca, “Studies on the structure of Gothic Cathedrals”, in Historical Constructions: Possibilities of numerical and experimental techniques: Proceedings of the 3rd International Seminar, 7-9 November 2001, Guimarães, Portugal, P.B. Lourenço, P. Roca, Eds. 2001, pp. 71-90.
  • [17] M.J. Turner, R.W. Clough, H.C. Martin, L.J. Topp, “Stiffness and Deflection Analysis of Complex Structures”, Journal of the Aeronautical Sciences, 1956, vol. 23, no. 9, pp. 805-823; DOI: 10.2514/8.3664.
  • [18] O.C. Zienkiewicz, R.L. Taylor, The Finite Element Method, 5th ed. Oxford, et al.: Butterworth-Heinemann, 2000.
  • [19] H. Animas, M. Navarro, J. Pacheco-Martinez, et al., “Structural Analysis of the Temple of San Antonio in Aguascalientes Mexico”, in Proceedings of the 2014: 9th International Conference on Structural Analysis of Historical Constructions, SAHC2014, 14-17 October 2014, Mexico City, Mexico, F. Peña & M. Chávez, Eds. 2014.
  • [20] L. Szojda, Ł. Kapusta, “Numerical analysis of the influence of mining ground deformation on the structure of a masonry residential building”, Archives of Civil Engineering, 2021, vol. 67, no. 3, pp. 243-257; DOI: 10.24425/ace.2021.138054.
  • [21] P. Roca, M. Cervera, G. Gariup, L. Pela, “Structural Analysis of Masonry Historical Constructions. Classical and Advanced Approaches”, Archives of Computational Methods in Engineering, 2010, vol. 17, no. 3, pp. 299-325.
  • [22] Ł. Kapusta, L. Szojda, “The role of expansion joints for traditional buildings affected by the curvature of the mining area”, Engineering Failure Analysis, 2021, vol. 128, pp. 1-25; DOI: 10.1016/j.engfailanal. 2021.105598.
  • [23] S. Atamturktur, S. Prabhu, G. Roche, “Predictive modeling of large scale historic masonry monuments: uncertainty quantification and model validation”, in Proceedings of the 9th International Conference on Structural Dynamics, EURODYN 2014, 30 June-2 July 2014, Porto, Portugal, A. Cunha, et al., Eds. 2014, pp. 2721-2727.
  • [24] J. Tippner, J. Milch, V. Sebera, J. Kunecký, M. Kloiber, M. Navrátil, “Finite-element analysis of a historical truss reconstructed with a traditional all-wooden joints”, in Proceedings of the 2014: 9th International Conference on Structural Analysis of Historical Constructions, SAHC2014, 14-17 October 2014, Mexico City, Mexico, F. Peña & M. Chávez, Eds. 2014.
  • [25] L. Candelpergher, M. Piazza, “Mechanics of traditional connections with metal devices in timber roof structures”, Transactions on the Built Environment, 2001, vol. 55, pp. 415-424.
  • [26] L. Jankowski, L.J. Engel, J. Jasieńko, “Static work of selected connections occurring in wooden historical objects”, Wiadomosci Konserwatorskie, 2005, vol. 18, pp. 29-41 (in Polish).
  • [27] J.R. Villar, M. Guaita, P. Vidal, R. Argüelles Bustillo, “Numerical simulation of framed joints in sawn-timber roof trusses”, Spanish Journal of Agricultural Research, 2008, vol. 6, no. 4, pp. 508-520.
  • [28] L. Schueremans, “Assessing Historic Timber Roof Structures Methodology and Case Studies from a Belgian Viewpoint”, in Proceedings of the 2009: Conference Series on Theoretical and Practical Issues on Built Heritage Conservation - TUSNAD 2009, 27-28 May, Colţeşti, Romania. 2009.
  • [29] P. Dike, S. MacDonald Malmberg, “Structural Analysis of the Roof Structure in the Reformed Church”, M.A. thesis, Lund University, Sweden, 1998.
  • [30] A. Romano, “Modelling, Analysis and Testing of Masonry Structures”, PhD Thesis, Università degli Studi di Napoli Federico II Facoltà di Ingegneria, Italy, 2005.
  • [31] G.A. Rombach, Finite element design of concrete structures. Practical problems and their solutions. London: Thomas Telford Ltd., 2004.
  • [32] C. Conte, C. Rainieri, M.A. Aiello, G. Fabbrocino, “Dynamic assessment of ancient masonry vaults: experimental tests and numerical modelling”, in Proceedings of the 2009: Protection of Historical Buildings, PROHITECH 09, London, United Kingdom, F. Mazzolani, Ed. Taylor & Francis Group, 2009, pp. 1597-1602.
  • [33] T. Parent, N. Domede, A. Sellier, C. Dujarrier, “Structural analysis of masonry historical construction: ribbed-vault case study”, in Proceedings of the 2014: 15th Structural Faults and Repairs Conference, 8-10 July, London, United Kingdom. 2014; DOI: 10.13140/2.1.1497.3445.
  • [34] M. Armuth, D. Hegyi, A.A. Sipos, “Structural analysis of the baroque parish church of Zsámbék”, Periodica Polytechnica Architecture, 2010, vol. 41, no. 2, pp. 43-47; DOI: 10.3311/pp.ar.2010-2.01.
  • [35] F. Cakir, B.S. Seker, A. Doğangün, “Assessment of structural performance of historical Ishan church”, Gradevinar, 2014, vol. 66, no. 5; DOI: 10.14256/JCE.1015.2014.
  • [36] BS EN 338:2016 Structural timber - Strength classes.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-10fffcf9-6be1-4466-b5f5-1b5e22bd985e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.