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Abstract: The process line of concentrating iron ore materials is considered as a sequence of connected concentration units, some  
of which partially return ore materials to the previous unit. The output product of the final concentration unit in the process line is the end 
product of the whole line. Characteristics of ore, such as distribution of ore particles by size and distribution of iron content by size classes, 
are considered. Processing of iron ore materials by process units (a cycle, a scheme) is characterised by a separation characteristic – 
namely the function of extracting elementary fractions depending on physical properties of ore particles. The results of fraction analysis  
of ore samples in different points of the process line provide an experimental definition of separation characteristics and numerical values 
of the Rosin–Rammler equation factors. To identify dependencies that cannot be analytically described, the hybrid approach accompanied 
by the Takagi–Sugeno fuzzy models, in accompaniment with triangular membership functions determining fuzzy sets in preconditions,  
are used. To identify fuzzy sets in rule preconditions, triangular membership functions are used. Introduction of a-priori data on iron ore 
concentration as constraints for model parameters is a promising trend of further research, since it enables increased accuracy  
of identification despite limited availability of experimental data. 
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1. INTRODUCTION 

Iron ore processing is influenced by a variety of factors to var-
ying extents. Among them, the following groups of factors are 
distinguished [23, 28–29, 34]: characteristics of mineralogical 
composition of ore; parameters of crushing machines determining 
the rate of size reduction of crushed ore; parameters determining 
grinding indices; parameters determining floatation processes. 
Based on this list, certain basic trends are distinguished in solving 
the problems of enhancing productivity of a concentration plant in 
terms of a marketable product [6, 7, 36, 37]: developing efficient 
regulations of the process conduction and upgrading technological 
equipment; designing automated control systems for concentra-
tion processes considering technological properties of processed 
ore; creating the system of automatic control over critical modes 
of technological processes and the expert decision support sys-
tem. 

The resulting separation characteristic of ore materials with 
a working point in the optimal cut-point is an essential indicator of 
improving the technological line of ore concentration [21, 22]. In 
technological flows of the ore concentration line at various stages, 
critically different types of ore materials in terms of their physical–
mechanical and chemical–mineralogical characteristics are sub-
jected to concentration; it is therefore expedient to investigate into 
the formation of a separation characteristic of technological con-
centration processes based on operating data on dynamics of 
their parameters [5, 20, 26]. 

Technological processes of ore-concentrating plants involve 

multi-staged crushing and grinding to prepare ore for subsequent 
separation [17, 32]. The operations are aimed at releasing ore 
grains and extracting particles of various minerals by reducing 
grain sizes up to 0.1 mm and less. In some cases, the size of the 
impregnated useful component covers several size classes used 
to assess granulometric composition of concentration products at 
mining and concentration plants (Fig. 1): ‘+3’, ‘−3 + 1’, ‘−1 + 0.5’, 
‘−0.5 + 0.25’, ‘−0.25 + 0.125’, ‘−0.125 + 0.071’, ‘−0.071 + 0.056’, 
‘−0.056 + 0.044’, ‘−0.044 + 0’.  

2. LITERATURE ANALYSIS 

According to the research results [15–16, 32], to obtain quanti-
tative evaluation of mineral products, except for the factor of 
mineral particles distribution 𝛾(𝜉) by fractions with different phys-

ical properties ξ, the factor of useful components distribution 𝛽(𝜉) 

should also be used. The factors 𝛾(𝜉) and 𝛽(𝜉) enable quantita-
tive evaluation of ore materials. To facilitate quantitative evalua-
tion of efficiency of process units, the authors suggest using sepa-
ration characteristics 𝜀(𝜉) determining the value of extracting ε of 
mineral fractions into concentration products. The useful compo-
nent is extracted into concentrate from the initial ore materials due 
to different physical properties ξ of a given component and ac-
companying minerals. In working zones of concentration units, 
particles are separated under the influence of physical forces. 
Particles with some physical properties (ξ > ξр) move to one 
section of the working zone (concentrate), while particles with 
other properties (ξ < ξр) move to the other (tailings). 
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a)       (b) 

  
c)       (d) 

Fig. 1. Iron distribution by ore size classes at various points of the technological process

3. RESEARCH METHODS 

In a general case, concentration units as control objects are 
operators transforming vectors of input variables into those of 
output variables. In compliance with this approach, the technolog-
ical line of iron ore concentration is referred to as a set of n con-
nected concentration units (Fig. 2). The first unit of the process 
line – usually a ball mill of wet grinding [19] – is fed with raw mate-

rials of 𝑄0
(Р)

 volume with certain qualitative characteristics 𝜉0̅. 

These characteristics include [23, 26]: distribution of raw materials 
by size; distribution of Fetot and Femag content by size classes. 
Intermediate concentration product produced at the output of the 
first technological unit is a raw material for the next unit or it is 
partially returned to the previous unit for additional processing. A 
spiral classifier, a hydrocyclone and a deslimer are examples of 
concentration units that return insufficiently ground ore particles. 
The final product of the last concentration unit in the process line, 
which is usually a magnetic separator, is concentrate, the end 
product of a given line. 

 

Fig. 2. Structural scheme of technological lines of iron ore concentration:  
            M – mill, C – classifier; S – magnetic separator; H – hydrocyclone;  
            D – deslimer 

Output parameters of each process unit yi = (yi-−1, yi), I = 1…n 
depend on the condition of a previous unit. In compliance with the 
method presented in [8], we denote a set of possible values of the 

condition vector of the i-th element by Yi, yi∈Yi, the condition 
vector of the i-th subsystem composed of i successively connect-
ed elements – by y1i, a set of possible values of the condition 
vector of the i-th subsystem: 

𝑌1𝑖 = ∏ 𝑌𝑠
𝑖
𝑠=1 = {𝑦𝑠 ∈ 𝑌𝑠, 𝑠 = 1, 𝑖}, 𝑦1𝑖 ∈ 𝑌1𝑖 ,          (6) 

the vector of the process complex composed of n successively 
connected elements: 

𝑦1𝑛 = ∏ 𝑌𝑖
𝑛
𝑖=1 = {𝑦𝑖 ∈ 𝑌𝑖 , 𝑖 = 1, 𝑛},  (7) 

a set of possible values of the condition vector of a process com-

plex at a mining and concentration plant – by Y1n, y1n∈Y1n, the 
vector of parameters of the i-th element – by κi, and a set of its 

values – by κi, κi∈Κi. It should be noted that in this case, Yi indi-
cates technological constraints of a corresponding element of the 
technological complex. 

where Θ is an operator of the grinding unit; 

{𝑄1
(𝑆𝑙𝑢𝑟𝑟𝑦)

} , {𝑟1[𝑑], 𝑠1[𝑑]} are vectors of output values; 

{𝑄0
(𝑂𝑟𝑒)

, 𝑄0
(𝑊𝑎𝑡𝑒𝑟)

} is a vector of controlling actions; 

{𝑟0[𝑑], 𝑠0[𝑑]} is a vector of disturbance actions (the characteris-

tic of the input flow of ore materials); 𝑡 is a time variable. 
The separating unit (a spiral classifier, a deslimer, a hydrocy-

clone, a magnetic separator) as an operator assumes the follow-
ing form: 

{
{𝑄

2
(𝐼), 𝑟2

(𝐼)[𝑑], 𝑠2

(𝐼)[𝑑]} ,

 {𝑄
2
(𝐼𝐼), 𝑟2

(𝐼𝐼)[𝑑], 𝑠2

(𝐼𝐼)[𝑑]}
} = Λ2 (

{𝑄
1
(𝑆𝑙𝑢𝑟𝑟𝑦)},

{𝑟1[𝑑], 𝑠1[𝑑]}, 𝑡
)   (9) 

where Λ is an operator of the separating unit; 

{𝑄2
(𝐼)

, 𝑟2
(𝐼)[𝑑], 𝑠2

(𝐼)[𝑑]} are vectors of output values (discharge, 

middlings); {𝑄2
(𝐼𝐼)

, 𝑟2
(𝐼𝐼)[𝑑], 𝑠2

(𝐼𝐼)[𝑑]} are vectors of output values 

(sands, tailings); {𝑄1
(𝑆𝑙𝑢𝑟𝑟𝑦)

} are vectors of controlling actions; 

and {𝑟1[𝑑], 𝑠1[𝑑]} is a vector of disturbance actions (characteris-
tic of the input flow of ore materials). 
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The operator of the grinding unit is characterised by several 
inputs and outputs (МІМО). 

{
{𝑄1

(𝑆𝑙𝑢𝑟𝑟𝑦)
} ,

{𝑟1[𝑑], 𝑠1[𝑑]}
} = Θ1 (

{𝑄0
(𝑂𝑟𝑒)

, 𝑄0
(𝑊𝑎𝑡𝑒𝑟)

},

{𝑟0[𝑑], 𝑠0[𝑑]},   𝑡
)       (10) 

Absolutely analytical representation of the operator of the 

grinding unit Θ1 is impossible due to complexity of connections 
between output and input signals. 

Among such signals in grinding, there are operator elements 
such as the following: 

 redistribution (change of sizes) of particles in the output flow 
of ore materials: 

{𝑟1[𝑑]} = Θ1
𝑟 ({𝑄0

(Р)
, 𝑄0

(В)
}, {𝑟0[𝑑], 𝑠0[𝑑]},   𝑡)       (11) 

 redistribution (as a result of changed sizes) of Fe content in 
size classes of the output flow of ore materials: 

{𝑠1[𝑑]} = Θ1
𝑟 ({𝑄0

(Р)
, 𝑄0

(В)
}, {𝑟0[𝑑], 𝑠0[𝑑]},   𝑡)       (12) 

The operator of the separation unit in the same way as that of 
the grinding unit is characterised by multiple inputs multiple out-
puts (MIMO). At the same time, the separating unit has two output 
flows of ore materials; this doubling of the number of output val-
ues is comparable to the grinding unit. 

{
{𝑄2

(𝐼)
, 𝑟2

(𝐼)[𝑑], 𝑠2
(𝐼)[𝑑]},

{𝑄2
(𝐼𝐼)

, 𝑟2
(𝐼𝐼)[𝑑], 𝑠2

(𝐼𝐼)[𝑑]}
} = Λ2 (

{𝑄1
(П)

},

{𝑟1[𝑑], 𝑠1[𝑑]}, 𝑡
) (13) 

As in the case of designing a mathematical model of the grind-
ing unit, absolutely analytical representation of the operator of the 

separating unit Λ2 is impossible because of complex connections 
between output and input signals. 

Among such signals in grinding, there are operator elements 
such as the following: 

 redistribution (change of sizes) of particles in the output flow 
of ore materials: 

{𝑟2
(𝐼)[𝑑]} = Λ2 ({𝑄1

(П)
}, {𝑟1[𝑑], 𝑠1[𝑑]}, 𝑡) ;

{𝑟2
(𝐼𝐼)[𝑑]} = Λ2 ({𝑄1

(П)
}, {𝑟1[𝑑], 𝑠1[𝑑]}, 𝑡) ,

 (14) 

 redistribution (as a result of changed sizes) of Fe content in 
size classes of the output flow of ore materials: 

{𝑠2
(𝐼)[𝑑]} = Λ2 ({𝑄1

(П)
}, {𝑟1[𝑑], 𝑠1[𝑑]}, 𝑡) ;

{𝑠2
(𝐼𝐼)[𝑑]} = Λ2 ({𝑄1

(П)
}, {𝑟1[𝑑], 𝑠1[𝑑]}, 𝑡) ,

 (15) 

It should be noted that while using the material balance equa-
tion, one of the separating units can be calculated by values 

of another output. For example, the output parameter {𝑟2
(𝐼𝐼)[𝑑]} 

can be calculated by the known output parameter {𝑟2
(𝐼)[𝑑]} and 

the input one {𝑟1[𝑑]}. 
Iron ore processing by process units (a cycle, a scheme) is 

characterised by a separation characteristic 𝜀(𝜉) – a function of 
extracting elementary fractions depending on physical properties 

of particles 𝜉 of ore materials [32]. 
Dependency β(ξ) of the useful component content on physical 

properties ξ of particles is one of the basic characteristics of ore 

composition (32). Inside each fraction, separate particles can 

have different content of the component; a set 𝛽
1
, 𝛽

2
, … , 𝛽

𝑛
 

and the function β(ξ) provide average values of the content inside 
a fraction. It is worth noting that in separating ore particles by the 
property ξ, the value of the useful component content β is sec-
ondary. Ore materials and concentration products are identified by 
the change of the physical property ξ of particles in a certain 
range [ξmin, ξmax] due to available mineral aggregates. The output 
of the i-th fraction [ξi, ξi+1] is determined as a ratio of mass of its 
particles to total mass of particles of all fractions in a range of 
[ξmin, ξmax]: 

𝛾
𝑖

= 𝛾(𝜉
𝑖
)Δ𝜉

𝑖
= 𝑃𝑖 ∑ 𝑃𝑖

𝑛
𝑖=1⁄    (16) 

where 𝛾(𝜉𝑖) is mass of the i-th fraction in the mixture, i.e. a dis-
crete analogue of the differential function of distributing particles 

according to the physical property ξ; Δ𝜉𝑖 is fraction size; 𝑃𝑖 is 
productivity by the i-th fraction. 

Final fractions are extracted by separating the total range [ξmin, 
ξmax] of the changes of the physical property ξ of the particles’ 

mixture by some number of final fractions Δ𝜉1, Δ𝜉2, … , Δ𝜉𝑛  [32]. 

Extraction of the solid final fraction [𝜉𝑖 , 𝜉𝑖 + Δ𝜉𝑖] into concentrate 
results in equality to the ratio of productivity of the solid of the 

given fraction in the concentrate 𝑃𝑖  к and the input material 𝑃𝑖  вх. 

𝜀𝑖  к =
𝑃𝑖  к

𝑃𝑖  вх
=

𝑄к𝛾𝑖  к

𝑄вх𝛾𝑖  вх

=
𝑄к𝛾𝑖  к(𝜉𝑖)Δ𝜉𝑖

𝑄вх𝛾𝑖  вх(𝜉𝑖)Δ𝜉𝑖

   (17) 

where 𝑄к, 𝑄вх are productivities of the solid in the concentrate 

and the input material, respectively, t/h; 𝛾
𝑖  к

, 𝛾
𝑖  вх

 is output of a 

fraction in the concentrate and the input material, respectively; 

𝛾𝑖  к(𝜉), 𝛾𝑖  вх(𝜉) are distribution of the solid by fractions in the 
concentrate and the input material, respectively. Application of the 
given formula to each fraction enables a set of final extractions of 

fractions 𝜀1  к, 𝜀2  к, … , 𝜀𝑛  к. After fulfilling the condition 

Δ𝜉𝑖 → 0,   𝑛 → ∞, the mentioned set is transformed into a con-
tinuous function – a separation characteristic [32] 

𝜀к(𝜉) =
𝑄к𝛾к(𝜉)𝑑𝜉

𝑄вх𝛾вх(𝜉)𝑑𝜉
= 𝛾

к

𝛾к(𝜉)

𝛾вх(𝜉)
   (18) 

where 𝛾
к

= 𝑄
к

𝑄
вх

⁄  is the concentrate yield, unit fraction. 

According to the method of experimentally determining the 
separation characteristic presented in [32], there is a need to 
measure productivity of the input material 𝑄вх and the concentrate 

𝑄к. Next, fraction analysis of samples of the input material and 
the concentrate should be performed to define distribution func-
tions 𝛾вх(𝜉), 𝛾к(𝜉), followed by calculations using Eq. (18). 

The density of distributing mass of fractions by sieve composi-
tion is described by Weilbull distribution [30] 

𝑟[𝑑] = 𝐴𝑎𝑑𝑎−1𝑒−𝐴𝑑𝑎
   (19) 

to which the equation of the distribution function 𝑅[< 𝑑] = 1 −

𝑒−𝐴𝑑𝑎
 corresponds. The Rosin–Rammler equation of granulo-

metric composition by the total residue on the sieve with the cell d 
assumes the form of: 

𝑅[> 𝑑] = 𝑒−𝐴𝑑𝑎
   (20) 

After changing the numerical value of the factor 𝑎, Eq. (20) 

enables describing a wide range of curves [30]. With 𝑎 > 1, the 
density curve reaches its maximum and then decreases asymptot-
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ically; with 𝑎 < 1 the curve looks like a hyperbole. The larger the 
indicator A, the more concave the curve of granulometric compo-

sition. With 𝑎 = 1 Eq. (19) changes into the one-parameter law of 
exponential distribution. 

Eq. (20) is linearised with double logarithmation – 

ln(−ln𝑅[> 𝑑]) = ln𝐴 + 𝑎ln𝑑   (21) 

The size of the sieve cell 𝑑max = 𝐷, and the residue on 

which it equals 𝑣(i.e. 𝑣 = 0,05), will correspond to the maximum 

statistic size of ore particles 𝑑max[30] 

𝑅[> 𝑑max] = 𝑣 = 𝑒−𝐴𝑑max
𝑎

   (22) 

After substituting 𝐴 into Eq. (20), because of the maximum 
size of a particle, the expression assumes the form: 

𝑅[> 𝑑] = 𝑒ln𝑣(𝑑 𝑑max⁄ )𝑎
   (23) 

There are some technological products (i.e. classifier sands) 
with no fine fractions; this fact does not allow application of Eq. 

(20) to the product like that. Correction for 𝑑min can be consid-

ered if we shift the coordinate origin by a value of 𝑑min on the 
abscissa axis, i.e. transform the equation into the form suggested 
in [30] 

𝑅[> 𝑑] = 𝑒−𝐴(𝑑−𝑑min)𝑎
   (24) 

In this form, the equation satisfies any lower boundary value. 
The distribution density expressed by Eq. (24) is similar to Eq. 
(19): 

𝑟[𝑑𝑖] = 𝐴𝑎(𝑑𝑖 − 𝑑min)𝑎−1𝑒−𝐴(𝑑𝑖−𝑑min)𝑎
   (25) 

The considered dependencies are also applied to the descrip-
tion of distributing the useful component mass (metal) of fractions 
[30]. 

𝑆[> 𝑑] = 𝑒−𝐵(𝑑𝑖−𝑑min)𝑏
   (26) 

An equation similar to that of the distribution density presented 
in Eq. (25) assumes the following form: 

𝑠[𝑑] = 𝐵𝑏(𝑑 − 𝑑min)𝑏−1𝑒−𝐵(𝑑−𝑑min)𝑏
   (27) 

𝑆[> 𝑑] =
𝑒−𝐵(𝑑−𝑑min)

𝑏
−𝑒−𝐵(𝑑max−𝑑min)

𝑏

1−𝑒−𝐵(𝑑max−𝑑min)
𝑏    (28) 

Eqs (26) and (25) are linearised with double logarithmisation 

in the coordinate system 𝑌 = ln(−ln𝑆[> 𝑑]) and 𝑋 =
ln(𝑑 − 𝑑min). The parameters of distributing the components, B 
and b, determine the character of the distribution curve of the 
granulometric composition and metal in the product. 

Thus, the aggregate of both distributions enables full descrip-
tion of product composition in technological terms [30]. For exam-
ple, based on distribution of mass of a product and that of metal in 

it, distribution of metal content by size fractions with 𝑑min = 0 
can be described in the following way:  

𝛼[𝑑𝑖] =
𝑠[𝑑𝑖]

𝑟[𝑑𝑖]
𝛼0 =

𝛼0𝐵𝑏

𝐴𝑎
𝑑𝑖

𝑏−𝑎𝑒𝐴𝑑𝑖
𝑎−𝐵𝑖

𝑏
   (29) 

In a similar way, we write metal content in a fraction of larger 
(smaller) size by means of the ratios [30] 

𝛼[> 𝑑] =
𝑆[>𝑑]

𝑅[>𝑑]
𝛼0 =

𝑒−𝐵𝑑𝑏

𝑒−𝐴𝑑𝑎 𝛼0   (30) 

𝛼[< 𝑑] =
𝑆[<𝑑]

𝑅[<𝑑]
𝛼0 =

1−𝑒−𝐵𝑑𝑏

1−𝑒−𝐴𝑑𝑎 𝛼0   (31) 

Thus, to form a mathematical model of iron ore processing in 
technological units, it is necessary to identify parameters of the 
dependencies presented above. 

4. RESEARCH RESULTS 

To calculate factors of the Rosin–Rammler equation based on 
experimental data gathered from the results of sieve analysis, the 
method suggested by L.P. Shupov [30] can be utilised. On the first 
stage, sieve analysis data determine total yield of fractions by the 

formulae: for the fraction 𝑟[𝑑1] – 𝑅[> 𝑑1] = 𝑟[𝑑1]; for the 
fraction 𝑟[𝑑𝑖] – 𝑅[> 𝑑𝑖] = 𝑟[𝑑1] + 𝑟[𝑑2] + ⋯ + 𝑟[𝑑𝑖]; for 

the fraction 𝑟[𝑑𝑚] – 𝑅[> 𝑑𝑚] = 1. While doing the research 
(Fig. 3), the authors consider the following size fractions of ore 
particles: +3, −3 + 1, −1 + 0.5, −0.5 + 0.25, −0.25 + 0.125, 
−0.125 + 0.071, −0.071 + 0.056, −0.056 + 0.044, −0.044 + 0. The 
testing results of the concentration line were obtained during the 
operations under the supervision of T.A. Oliinyk [12, 24]. 

To calculate factors of metal distribution B and b for each frac-
tion (Fig. 4), metal content 𝛼[𝑑𝑖] and metal share for this fraction 
are determined: 

𝑠[𝑑𝑖] = 𝑟[𝑑𝑖]𝛼[𝑑𝑖] 𝛼0⁄    (32) 

where 𝛼0 is total content of metal in the product. The metal share 
in the fraction is larger than d: 

𝑆[> 𝑑𝑖] = 𝑠[𝑑1] + 𝑠[𝑑2] + ⋯ + 𝑠[𝑑𝑖−1] + 𝑠[𝑑𝑖]       (33) 

To determine the factors of the Rosin–Rammler equation in 
(30), the least square method is used. After linearising the ex-
pression in Eq. (20) by double logarithmation, we obtain: 

ln(−ln𝑅[> 𝑑]) = ln𝐴 + 𝑎ln𝑑   (34) 

we denote 

𝑌𝑖
(𝑅) = ln(−ln𝑅[> 𝑑𝑖]);   𝑍𝑖

(𝑅) = ln𝑑𝑖,   (35) 

and for the useful component content 

𝑙𝑛(−𝑙𝑛𝑆[> 𝑑]) = 𝑙𝑛𝐵 + 𝑏𝑙𝑛𝑑;  

𝑌𝑖
(𝑆) = 𝑙𝑛(−𝑙𝑛𝑆[> 𝑑𝑖]);   𝑍𝑖

(𝑆) = 𝑙𝑛𝑑𝑖,
   (36) 

Parameters of the Rosin–Rammler equation for different 
points of the technological line are presented in Tab. 1. 

Parameters of the Rosin–Rammler equation for mathematical 
modelling of Fe content distribution by size classes of ore particles 
along the concentration line for different process line points are 
presented in Tab. 2. 
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Fig. 3. Total yield of fractions in control points along the concentration line

 
Fig. 4. Metal share in the fraction in control points along the concentration line
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Tab. 1. Rosin–Rammler equation factors for distributing ore particles by size classes (R) 

Unit Factor А Factor а Determination factor Mean square error 

(1) Mill discharge 1st stage #1 0.0368 1.9400 0.8775 11.7944 

(2) Classifier discharge #1 0.5924 0.8162 0.9004 6.3519 

(3) Mag. separation 1st feed, 1st stage #1/#2 0.6612 0.7841 0.9054 5.7896 

(4) Mag. separation 2nd feed, 1st stage #1/#2 0.5767 0.8354 0.8972 6.5903 

(5) Hydrocyclone sands 2nd stage 0.2716 1.3088 0.9726 4.6582 

(6) Mill discharge 2nd stage  0.5365 1.0084 0.9597 4.2967 

(7) Mag. separation 2nd stage 0.6173 0.9121 0.9609 3.8813 

(8) Hydrocyclone discharge 2nd stage 1.9728 0.5106 0.9201 1.4593 

(9) Deslimer sands 1st stage. 1.8733 0.5436 0.9363 1.4275 

(10) Mag. product 3rd stage 2.0908 0.4914 0.9224 1.2758 

(11) Hydrocyclone sands 3rd stage 1.5101 0.6462 0.9484 1.8387 

(12) Mill discharge 3rd stage 2.0425 0.5471 0.9573 0.9749 

(13) Hydrocyclone discharge 3rd stage 3.3499 0.4278 0.9423 0.3087 

(14) Deslimer sands 2nd stage 3.4106 0.4216 0.9420 0.2912 

(15) Mag. product 4th stage 3.4752 0.4152 0.9418 0.2736 

Tab. 2. Factors of Rosin–Rammler equation for distributing Fe content by size classes (S) 

Unit Factor B Factor b Determination factor Mean square error 

(1) Mill discharge 1st stage #1 0.0728 1.5968 0.9418 0.2736 

(2) Classifier discharge #1 0.7806 0.7478 0.9418 0.2736 

(3) Mag. separation 1st feed, 1st stage #1/#2 0.9579 0.6790 0.9418 0.2736 

(4) Mag. separation 2nd feed, 1st stage #1/#2 0.9015 0.6884 0.9418 0.2736 

(5) Hydrocyclone sands 2nd stage 0.4103 1.1733 0.9418 0.2736 

(6) Mill discharge 2nd stage  0.6482 0.9729 0.9418 0.2736 

(7) Mag. separation 2nd stage 0.7910 0.8580 0.9418 0.2736 

(8) Hydrocyclone discharge 2nd stage 2.8185 0.4344 0.9418 0.2736 

(9) Deslimer sands 1st stage. 2.6107 0.4935 0.9418 0.2736 

(10) Mag.product 3rd stage 2.8679 0.4243 0.9418 0.2736 

(11) Hydrocyclone sands 3rd stage 2.0485 0.6049 0.9418 0.2736 

(12) Mill discharge 3rd stage 2.5394 0.5340 0.9418 0.2736 

(13) Hydrocyclone discharge 3rd stage 4.6735 0.3412 0.9418 0.2736 

(14) Deslimer sands 2nd stage 4.5014 0.3614 0.9418 0.2736 

(15) Mag. product 4th stage 4.6428 0.3421 0.9418 0.2736 

 
Abonyi et al. [1] considers identification of fuzzy models with 

the structure suggested in [31]. This fuzzy model is composed of a 
set of rules in the following form: 

𝑅𝑖1,…,𝑖𝑛
 ∶   𝑖𝑓  𝑧1  𝑖𝑠  𝐴1,𝑖1

  𝑎𝑛𝑑  …   𝑎𝑛𝑑  𝑧𝑛  𝑖𝑠  𝐴𝑛,𝑖𝑛
  

                𝑡ℎ𝑒𝑛  𝑦 = 𝑓
𝑖1,…,𝑖𝑛

(𝑧1, … , 𝑧𝑛)        (37) 

where n is the number of inputs, 𝑧̅ = [𝑧1, … , 𝑧𝑛] is the vector 

containing all the inputs of the fuzzy model and 𝐴𝑗,𝑖𝑗
(𝑧𝑗) is the 𝑖𝑗-

th fuzzy set of preconditions for the j-th input. The same symbol is 

applied to the fuzzy set and its membership function. 𝑀𝑗  is the 

number of fuzzy sets in the j-th input domain. 𝑓𝑖1,…,𝑖𝑛
(𝑧)̅ is a 

(crisp) output function. For the given input vector 𝑧̅ the output of 
the fuzzy model y is calculated as weighted: 

𝑦 =

∑ …
𝑀1
𝑖1=1 ∑ 𝛽𝑖1,…,𝑖𝑛

𝑓𝑖1,…,𝑖𝑛
(𝑧1, … , 𝑧𝑛)𝑀𝑛

𝑖𝑛=1 ∑ …
𝑀1
𝑖1=1 ∑ 𝛽𝑖1,…,𝑖𝑛

𝑀𝑛
𝑖𝑛=1⁄

                                         (38) 

where the weight 𝛽𝑖1,…,𝑖𝑛
> 0 is the overall truth value of the 

𝑖1 … 𝑖𝑛-th rule calculated by the formula: 

𝛽
𝑖1,…,𝑖𝑛

= ∏ 𝐴𝑗,𝑖𝑗
(𝑧𝑗)

𝑛
𝑗=1    (39) 



Vladimir Morkun, Vitalii Tron, Vadym Zymohliad                           DOI  10.2478/ama-2022-0010 
Modelling of Iron Ore Processing in Technological Units Based on The Hybrid Approach  

88 

To determine fuzzy sets in rule preconditions in Abonyi et al. 
[1], a triangular membership function is used: 

𝑎𝑗,𝑖𝑗
= 𝑐𝑜𝑟𝑒 (𝐴𝑗,𝑖𝑗

(𝑧𝑗)) = {𝑧𝑗|𝐴𝑗,𝑖𝑗
(𝑧𝑗) = 1}   (40) 

where 𝑎𝑗,𝑖𝑗
 are kernels of fuzzy sets. 

The set carrier is determined by kernels of adjacent fuzzy 
sets: 

𝐴𝑗,𝑖𝑗
(𝑧𝑗) =

𝑧𝑗−𝑎𝑗,𝑖𝑗−1

𝑎𝑗,𝑖𝑗
−𝑎𝑗,𝑖𝑗−1

, 𝑎𝑗,𝑖𝑗−1 ≤ 𝑧𝑗 ≤ 𝑎𝑗,𝑖𝑗
;   

 𝐴𝑗,𝑖𝑗
(𝑧𝑗) =

𝑎𝑗,𝑖𝑗+1−𝑧𝑗

𝑎𝑗,𝑖𝑗+1−𝑎𝑗,𝑖𝑗

, 𝑎𝑗,𝑖𝑗
≤ 𝑧𝑗 ≤ 𝑎𝑗,𝑖𝑗+1.

                      (41) 

The above-mentioned method of determination guarantees 
that the total of membership functions is equal to one. These 
constraints enable obtainment of interpreted bases of rules. The 
output evaluation method presented in (1) can be applied without 
being bound to certain membership functions. As the product 
operator in Eq. (39) is applied to the connector ‘AND’, total values 
of truth satisfy the conditions:  

∑ …
𝑀1
𝑖1=1 ∑ 𝛽𝑖1,…,𝑖𝑛

𝑀𝑛
𝑖𝑛=1 = 1   (42) 

Thus, Eq. (2) can be simplified in the following way (1): 

𝑦 = ∑ …
𝑀1
𝑖1=1 ∑ [(∏ 𝐴𝑗,𝑖𝑗

(𝑧𝑗)𝑛
𝑗=1 ) 𝑓𝑖1,…,𝑖𝑛

(𝑧1, … , 𝑧𝑛)]
𝑀𝑛
𝑖𝑛=1  (43) 

In many fuzzy identification methods, a nonlinear autoregres-
sive exogenous model (NARX), of both neural-network and fuzzy 
types, is used. This model determines nonlinear dependency 
between previous inputs–outputs and a forecast output (1): 

𝑦(𝑘 + 1) = 𝐹 (
𝑦(𝑘), … , 𝑦(𝑘 − 𝑛𝑦 + 1), 𝑢(𝑘 − 𝑛𝑑), …

… , 𝑢(𝑘 − 𝑛𝑢 − 𝑛𝑑 + 1)
)

                                (44) 

where 𝑛𝑦 , 𝑛𝑢 are maximum lags of input and output signals, 

respectively, 𝑛𝑑 is discrete delay time and F is reflection of the 
fuzzy model. 

Tagaki–Sugeno fuzzy NARX-like model interpolates between 
local linear invariant (LTI) ARX models in this way (1): 

𝑅𝑖1,…,𝑖𝑛
 ∶   𝑖𝑓  𝑧1(𝑘)  𝑖𝑠  𝐴1,𝑖1

  𝑎𝑛𝑑  …   𝑎𝑛𝑑  𝑧𝑛(𝑘)  𝑖𝑠  𝐴𝑛,𝑖𝑛
  𝑡ℎ𝑒𝑛

     𝑦𝑖1,…,𝑖𝑛(𝑘 + 1) = ∑ 𝑎𝑖
𝑖1,…,𝑖𝑛𝑦(𝑘 − 𝑖 + 1)

𝑛𝑦

𝑖=1 +

                                 + ∑ 𝑏𝑖
𝑖1,…,𝑖𝑛𝑢(𝑘 − 𝑖 − 𝑛𝑑 + 1) + 𝑐𝑖1,…,𝑖𝑛

𝑛𝑢
𝑖=1

                           (45) 

where 𝑧̅(𝑘) is usually a subset {𝑦(𝑘), … , 𝑦(𝑘 − 𝑛𝑦 + 1),

𝑢(𝑘 − 𝑛𝑑), … , 𝑢(𝑘 − 𝑛𝑢 − 𝑛𝑑 + 1)}. This fuzzy model can 

be considered as linear parameter-varying (LPV): 

∑ 𝑎𝑖 𝑦(𝑘 − 𝑖 + 1)
𝑛𝑦

𝑖=1
= ∑ 𝑏𝑖 𝑢(𝑘 − 𝑖 − 𝑛𝑑 + 1) + 𝑐

𝑛𝑢
𝑖=1       (46) 

where 

𝑎0 = 1;

𝑎𝑖 = − ∑ …
𝑀1
𝑖1=1

∑ (∏ 𝐴𝑗,𝑖𝑗
(𝑧𝑗)𝑛

𝑗=1 ) 𝑎𝑖
𝑖1,…,𝑖𝑛 ,    𝑖 = 1, … , 𝑛𝑦

𝑀𝑛
𝑖𝑛=1 ;

𝑏𝑖 = ∑ …
𝑀1
𝑖1=1

∑ (∏ 𝐴𝑗,𝑖𝑗
(𝑧𝑗)𝑛

𝑗=1 ) 𝑏𝑖
𝑖1,…,𝑖𝑛 ,    𝑖 = 1, … , 𝑛𝑢

𝑀𝑛
𝑖𝑛=1 ;

𝑐 = ∑ …
𝑀1
𝑖1=1

∑ (∏ 𝐴𝑗,𝑖𝑗
(𝑧𝑗)𝑛

𝑗=1 ) 𝑐𝑖1,…,𝑖𝑛     𝑖 = 1, … , 𝑛𝑦
𝑀𝑛
𝑖𝑛=1 ,

   (47) 

Parameters 𝑎𝑖, 𝑏𝑖, 𝑐 are usually constrained in boundaries of 
convex sets (polytopes) separated by parameters of some rules. 
This results from Eq. (47) and the fact that degrees of member-
ship total one, as is shown in Eq. (6). It is indicated that some 
types of a-priori knowledge about the LTI model can be expressed 
as linear constraints of inequality [1, 33]: 

Λ𝐿𝑇𝐼𝜃𝐿𝑇𝐼 ≤ 𝜔𝐿𝑇𝐼   (48) 

where 𝜃𝐿𝑇𝐼 = [𝑎1, 𝑎2, … , 𝑎𝑛𝑦
, 𝑏1, … , 𝑏𝑛𝑢

, 𝑐] denotes parame-

ters of the LTI model. These constraints of the LTI model parame-
ters determine a set of convex parameters Ω: 

Ω = {𝜃𝐿𝑇𝐼|Λ𝐿𝑇𝐼𝜃𝐿𝑇𝐼 ≤ 𝜔𝐿𝑇𝐼}   (49) 

Abonyi et al. (1) suggests the method of introducing a-priori 

data into fuzzy model. The set of parameters 𝜃𝐿𝑇𝐼 of the LTI 
model can be a subset Ω. Through the convexity Ω and the con-
vexity of the applied method of fuzzy outputs, it is sufficient to 
check constraints for the rule outputs. This means that constraints 
can be adjusted to Takegi–Sugeno fuzzy model: 

Λ∗𝜃𝑖1,…,𝑖𝑛
≤ 𝜔∗   (50) 

where 

𝜃𝑖1,…,𝑖𝑛
=

[𝑎1
𝑖1,…,𝑖𝑛 , 𝑎2

𝑖1,…,𝑖𝑛 , … , 𝑎𝑛𝑦

𝑖1,…,𝑖𝑛 , 𝑏1
𝑖1,…,𝑖𝑛 , … , 𝑏𝑛𝑢

𝑖1,…,𝑖𝑛 , 𝑐𝑖1,…,𝑖𝑛] de-

notes parameters of the 𝑖1, … , 𝑖𝑛-th local model, Λ∗, 𝜔∗ are 
global constraints of the fuzzy model. 

5. CONCLUSIONS 

Technological concentration units as controlled objects are 
operators that transform vectors of input variables into those of 
output variables. Correspondingly, the process line of concentrat-
ing iron ore materials is considered as a sequence of connected 
concentration units, some of which partially return ore materials to 
the previous unit. The output product of the final concentration unit 
in the process line is the end product of the whole line. Character-
istics of ore such as distribution of ore particles by size and distri-
bution of Fetot and Femag content by size classes are considered. 

The operator of the separating unit, similar to that of the grind-
ing one, is characterised by several inputs and outputs (MIMO). At 
the same time, the separating unit has two output flows of ore 
materials, thus doubling the number of output values in relation to 
the grinding unit. 

As in the case of designing a mathematical model of the grind-
ing unit, absolutely analytical representation of the operator of the 
separating unit is impossible due to complexity of connections 
between output and input signals. Among such signals in grinding, 
one should distinguish between operator elements such as redis-
tribution (change of size) of particles in input flows of ore materials 
and redistribution of Fe content in size classes of output flows of 
ore materials. 

Processing of iron ore materials by process units (a cycle, a 
scheme) is characterised by a separation characteristic – namely 
the function of extracting elementary fractions depending on 
physical properties of ore particles. 

The results of fraction analysis of ore samples in different 
points of the process line provide experimental definition of the 
separation characteristics and numerical values of the Rosin–
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Rammler equation factors. 
To identify dependencies that cannot be analytically de-

scribed, the hybrid approach, accompanied by the Takagi–
Sugeno fuzzy models and triangular membership functions de-
termining fuzzy sets in preconditions, is used. To identify fuzzy 
sets in rule preconditions, triangular membership functions are 
used. 

Introduction of a-priori data on iron ore concentration as con-
straints for model parameters is a promising trend of further re-
search, since it enables increased accuracy of identification with 
limited availability of experimental data. 
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