PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

PM10 Concentration Levels in the Żywiec Basin vs. Variable Air Temperatures and Thermal Inversion

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A number of cities in Poland have been coping with the problem of air pollution levels exceeding the allowable limits, with PM10 airborne particulate considered one of the most hazardous factors for human health. Poland ranks high among European countries with some of the highest levels of airborne particulate pollution, and the Polish cities regularly place high in the EU ranking of those with the highest PM levels (and benzo(a)pyrene, a toxic airborne polycyclic aromatic hydrocarbons, or PAHs). Airborne PM10 concentration levels greatly depend on the prevailing atmospheric and topographic conditions. Temperature inversion represents one of the unfavorable weather conditions and this article attempts to study the effect of thermal conditions prevailing in the Żywiec Basin on airborne PM10 particulate concentrations in immissions. The 2016–2021 winter (heating) seasons were analyzed for pollution emissions, especially those related to heating by the municipal sector and classified as “low emissions”, i.e. emissions from sources not higher than 40 meters. An analysis of the 2016–2021 heating seasons showed the air temperature exerted a significant effect on combustion processes (low emissions) within the Żywiec Basin. The difference between airborne PM10 particulate levels in immissions at temperatures both above and below zero ranged from 86 μg/m3 in the 2016–2017 heating season to 25 μg/m3 in the same period in 2020–2021. Average airborne PM10 particulate concentrations throughout the entire period analyzed stood at 41.3 μg/m3 for the typical temperature distribution in the elevation profile, whereas inversion almost doubled it (72.2 μg/m3).
Rocznik
Strony
47--54
Opis fizyczny
Bibliogr. 31 poz., rys., tab.
Twórcy
  • Institute of Environmental Protection and Engineering, University of Technology and Humanities in Bielsko-Biała, ul. Willowa 2, 43-300 Bielsko-Biała, Poland
autor
  • Institute of Environmental Protection and Engineering, University of Technology and Humanities in Bielsko-Biała, ul. Willowa 2, 43-300 Bielsko-Biała, Poland
Bibliografia
  • 1. Adamek A., Ziernicka-Wojtaszek A. 2017. Variability of particulate matter PM10 concentration in Sosnowiec, Poland, depending on type of atmospheric circulation. Applied Ecology and Environmental Research, 15(4), 1803–1813.
  • 2. Bokwa A. 2012. Airborne PM10 particulate pollution and the synoptic and thermal conditions in Cracow. W: Zuzanna Bielec-Bąkowska. Ewa Łupikasza. Artur Widawski (ed.) The role of circulation in shaping the climate. Sosnowiec: University of Silesia Department of Earth Sciences, 275–286. (in Polish)
  • 3. Chlebowska-Styś A., Sówka I. 2015. Changing trends of airborne particulate concentrations (PM10 and PM2.5) and benzo(a)pirene using the example of selected towns in Wielkopolska, 40–53. (in Polish)
  • 4. Czarnecka M., Nidzgorska-Lencewicz R. 2017. The impact of thermal inversion on variability of PM10 concentration in winter seasons in the Tri-city area. Environment Protection Engineering, 43(2), 158–172.
  • 5. Czernecki B., Półrolniczak M., Kolendowicz L., Marosz M., Kendzierski S., Pilguj N. 2016. Influence of the atmospheric conditions on PM10 concentrations in Poznań. Poland. Journ. of Atm. Chem, 74(1), 115–139.
  • 6. Czernecki B., Półrolniczak M., Kolendowicz L., Marosz M., Kendzierski S., Pilguj N. 2016. Influence of the atmospheric conditions on PM10 concentrations in Poznań. Poland. Journ. of Atm Chem, 74(1), 115–139.
  • 7. Ćwiek K., Majewski G. 2015. The influence of meteorological factors on the development of air pollutants concentration – Cracow case study. Sc. Rev. – Eng. and Environmental Sc., 67, 54–66.
  • 8. Dacewicz E., Kopcińska J., Skowera B., Węgrzyn A., Wojkowski J., Ziernicka-Wojtaszek A., Zuśka Z. 2019. Circulation Conditions Determining High PM10 Concentrations in the Sącz Basin (Poland). Rocznik Ochrona Środowiska, 21, 264–280.
  • 9. Degórska A. 2016. Sources of airborne particulate pollutions. Collective work edited by K. Judy-Rezler and B. Toczko. Environmental Protection Inspection. Fine atmospheric airborne particulate. Compendium of knowledge about airborne particulate pollution in Poland, 22–25. (in Polish)
  • 10. European Environment Agency (EEA). 2015. Air quality in Europe - 2015 report. Report No 5/2015. Luxembourg: Publications Office of the European Union.
  • 11. European Environment Agency (EEA). 2018. Air quality in Europe - 2018 report. Report No 12/2018. Luxembourg: Publications Office of the European Union.
  • 12. Gioda A., Ventura L., Lima I., Luna A. 2013. Influence of meteorological parameters on air quality. EGU Gen. Assembly Conf. Abstracts. April, 15, 3256.
  • 13. Główny Inspektorat Ochrony Środowiska. 2017. The Condition of the Natural Environment in Poland. 2016 Signals. Biblioteka Monitoringu Środowiska. Warszawa, 5–18. (in Polish)
  • 14. Grajek Z., Szyga-Pluta K. 2021. Air temperature inversion in the Tatra Mountains in 1995-2020. Physiographic investigations. R. Xii – Seria A – Geografia Fizyczna, A72, 141–158. DOI 10.14746/bfg.2021.12.8 (in Polish)
  • 15. Jędruszkiewicz J., Czernecki B., Marosz M. 2017. The variability of PM10 and PM2 5 concentrations in selected Polish agglomerations: the role of meteorological conditions. 2006–2016. Internat. Journ. of Environ. Health Res, 27(6), 441–462.
  • 16. Jędruszkiewicz J., Czernecki B., Marosz M. 2017. The variability of PM10 and PM2.5 concentrations in selected Polish agglomerations: the role of meteorological conditions. 2006–2016. Internat. Journ. of Environ. Health Res, 27(6), 441–462.
  • 17. Jędruszkiewicz J., Piotrowski P., Pietras B. 2016. Airborne PM2.5 Particulate Pollution in Cracow in 2010–2014. Act. Geograph. Lodziensia, 104, 123–135. (in Polish)
  • 18. Kalbaczyk. R., Kalbarczyk. E., Raszka. B. 2018. Temporal changes in concentration of PM10 dust in Poznań, west-central Poland as dependent on meteorological conditions. Applied Ecology and Environmental Research, 16(2), 1999–2014.
  • 19. Kim K.-H., Kabir E., Kabir S. 2015. A review of the human health impact of airborne particulate matter. Environ Int, 74, 136–143.
  • 20. Largeron Y., Staquet Ch. 2016. Persistent inversion dynamics and wintertime PM10 air pollution in Alpine valleys. Atmos. Environ, 135, 92–108.
  • 21. Lu X.C., Lin C.Q., Li W.K., Chen Y.A., Huang Y.Q., Fung J.C.H., Lau A.K.H. 2019. Analysis of the adverse health effects of PM2.5 from 2001 to 2017 in China and the role of urbanization in aggravating the health burden. Sci Total Environ, 652, 683–695.
  • 22. Majewski. G., Rogula-Kozłowska. W., Rozbicka. K., Rogula-Kopiec. P., Mathews. B., Brandyk. A. 2018. Concentration. Chemical Composition and Origin of PM1: Results of the First Long-term Measurement Campaign in Warsaw (Poland). Aerosol and Air Quality Research, 18, 636–654.
  • 23. Oleniacz R., Bogacki M., Rzeszutek M., Kot A. 2014. Meteorological determinants of Cracow air quality. [in:] J. Konieczyński (red.). Air Protection Theory and Practice. Inst. Podst. Inż. Środ. PAN. Zabrze 2014, 163–178. (in Polish)
  • 24. Palarz A., Celiński-Mysław D. 2017. The effect of temperature inversions on the PM 10 particulate matter and sulfur dioxide concentrations in selected basins in the Polish Carpathians. Carpathian J. Earth Environ. Sci, 12(2), 629–640.
  • 25. Palarz A., Ustrnul Z., Wypych A. 2015. Temperature inversions in the Polish Carpathians and their influence on air pollution (case study). [in:] Šiška et al. (ed.) Towards Climatic Services.
  • 26. Palarz A. 2014. Variability of air temperature over Cracow when taking account of air circulation patterns. Geography Works, 138, 29–43. (in Polish)
  • 27. Pascal M., Corso M., Chanel O. Declercq C., Badaloni C., Cesaroni G., Henschel S., Meister K., Haluza D., Martin-Olmedo P. 2013. Assessing the public health impacts of urban air pollution in 25 European cities: Results of the Aphekomproject. Science of the Total Environment, 449, 390–400.
  • 28. Pasela R., Milik J., Budzińska K., Szejniuk B. 2017. An analysis of measuring airborne pollution concentrations with PM10 and PM2.5 at a measuring station at Plac Poznański Square in Bydgoszcz. Inżynieria Ekologiczna, 18, 240–246. (in Polish)
  • 29. Rawicki K. 2014. Variability of particulate matter concentrations in Poland in the winter 2012/2013. Fol. Pomeranae Universitatis Technologiae Stetinensis. Agr. Alimentaria. Piscaria et Zootechnica, 31.
  • 30. Rawicki K. 2014. Variability of particulate matter concentrations in Poland in the winter 2012/2013. Fol. Pomeranae Universitatis Technologiae Stetinensis. Agr.. Alimentaria. Piscaria et Zootechnica, 31.
  • 31. Rendón A.M., Salazar J.F., Palacio C.A. 2014. Effects of Urbanization on the Temperature Inversion Breakup in a Mountain Valley with Implications for Air Quality. J. Appl. Meteorol. Climatol, 53, 840–858.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-10f1a6d2-2790-46ed-bd25-a35a553ce516
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.