PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Assessment of Los Angeles abrasion value (LAAV) and magnesium sulphate soundness (Mwl) of rock aggregates using gene expression programming and artificial neural networks

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
It has been acknowledged that two important rock aggregate properties are the Los Angeles abrasion value (LAAV) and magnesium sulphate soundness (M wl). However, the determination of these properties is relatively challenging due to special sampling requirements and tedious testing procedures. In this study, detailed laboratory studies were carried out to predict the LAAV and M wl for 25 different rock types located in NW Turkey. For this purpose, mineralogical, physical, mechanical, and aggregate properties were determined for each rock type. Strong predictive models were established based on gene expression programming (GEP) and artificial neural network (ANN) methodologies. The performance of the proposed models was evaluated using several statistical indicators, and the statistical analysis results demonstrated that the ANN-based proposed models with the correlation of determination (R2) value greater than 0.98 outperformed the other predictive models established in this study. Hence, the ANN-based predictive models can reliably be used to predict the LAAV and M wl for the investigated rock types. In addition, the suitability of the investigated rock types for use in bituminous paving mixtures was also evaluated based on the ASTM D692/D692M standard. Accordingly, most of the investigated rock types can be used in bituminous paving mixtures. In conclusion, it can be claimed that the proposed predictive models with their explicit mathematical formulations are believed to save time and provide practical knowledge for evaluating the suitability of the rock aggregates in pavement engineering design studies in NW Turkey.
Rocznik
Strony
401--422
Opis fizyczny
Bibliogr. 69 poz., fot., rys., tab., wykr.
Twórcy
autor
  • Abdullah Gul University, Nanotechnology Engineering Department, 38100, Kayseri – Turkey
Bibliografia
  • [1] USGS, Mineral Industry Surveys: Crushed stone and sand and gravel in the fourth quarter 2020, (2021). https:// www.usgs.gov/centers/nmic.
  • [2] A.A. Al-Harthi, A field index to determine the strength characteristics of crushed aggregate. Bulletin of Engineering Geology and the Environment 60, 193-200 (2001). DOI: https://doi.org/10.1007/s100640100107.
  • [3] P.S. Kandhal, F. Parker, Aggregate tests related to asphalt concrete performance in pavements. Final Report (NO: 405) Transportation Research Board. Washington, (1998), USA.
  • [4] C. Mitchell, Construction aggregates: evaluation and specification. Third International Forum for Industrial Rocks & Mining conference & exhibition, Fujairah, United Arab Emirates, (2015).
  • [5] E. Erichsen, A. Ulvik, K. Sævik, Mechanical degradation of aggregate by the Los Angeles-, the Micro-Deval- and the Nordic Test Methods. Rock Mechanics and Rock Engineering 44, 333-337 (2011). DOI: https://doi.org/10.1007/s00603-011-0140-y.
  • [6] Y. Qian, H. Boler, M. Moaveni, E. Tutumluer, Y.M.A. Hashash, J. Ghaboussi, Characterizing ballast degradation through Los Angeles abrasion test and image analysis. Transportation Research Record 2448 (1), 142-151 (2014). DOI: https://doi.org/10.3141/2448-17.
  • [7] A. Török, Los Angeles and Micro-Deval Values of Volcanic Rocks and Their Use as Aggregates, Examples from Hungary. In: Lollino G., Manconi A., Guzzetti F., Culshaw M., Bobrowsky P., Luino F. (eds) Engineering Geology for Society and Territory 5, 115-118 (2015). DOI: https://doi.org/10.1007/978-3-319-09048-1_23.
  • [8] J. Wu, Y. Hou, L. Wang, M. Guo, L. Meng, H. Xiong, Analysis of coarse aggregate performance based on the modified Micro Deval abrasion test. International Journal of Pavement Research and Technology 11 (2) 185-194 (2018). DOI: https://doi.org/10.1016/j.ijprt.2017.10.007.
  • [9] E. Köken, A. Özarslan, G. Bacak, An experimental investigation on the durability of railway ballast material by magnesium sulfate soundness. Granular Matter 20, 29 (2018). DOI: https://doi.org/10.1007/s10035-018-0804-3.
  • [10] E.T. Tunc, K.E. Alyamac, Determination of the relationship between the Los Angeles abrasion values of aggregates and concrete strength using the Response Surface Methodology. Construction, and Building Materials 260 (10), 11985 (2020). DOI: https://doi.org/10.1016/j.conbuildmat.2020.119850.
  • [11] V. Hofer, H. Bach, C. Latal, A.C. Neubauer, Impact of geometric and petrographic characteristics on the variability of LA test values for railway ballast. Mathematical Geosciences 45, 727-752 (2013). DOI: https://doi.org/10.1007/s11004-013-9472-3.
  • [12] S. Kahraman, O.Y. Toraman, Predicting Los Angeles abrasion loss of rock aggregates from crushability index. Bulletin of Materials Science 31, 173-177 (2008). DOI: https://doi.org/10.1007/s12034-008-0030-4.
  • [13] R. Ajalloeian, M. Kamani, An investigation of the relationship between Los Angeles abrasion loss and rock texture for carbonate aggregates. Bulletin of Engineering Geology and the Environment 78, 1555-1563 (2019). DOI: https://doi.org/10.1007/s10064-017-1209-y.
  • [14] S. Kahraman, O. Gunaydin, Empirical methods to predict the abrasion resistance of rock aggregates. Bulletin of Engineering Geology and the Environment 66, 449-455 (2007). DOI: https://doi.org/10.1007/s10064-007-0093-2.
  • [15] I. Ugur, S. Demirdag, H. Yavuz, Effect of rock properties on the Los Angeles abrasion and impact test characteristics of the aggregates. Materials Characterization 61 (1), 90-96 (2010). DOI: https://doi.org/10.1016/j.matchar.2009.10.014.
  • [16] Y. Ozcelik, Predicting Los Angeles abrasion of rocks from some physical and mechanical properties. Scientific Research and Essays, 6 (7), 1612-1619 (2011).
  • [17] M. Palassi, A. Danesh, Relationships Between Abrasion/Degradation of Aggregate Evaluated from Various Tests and the Effect of Saturation. Rock Mechanics and Rock Engineering 49, 2937-2943 (2016). DOI: https://doi.org/10.1007/s00603-015-0869-9.
  • [18] L.O. Afolagboye, A.O. Talabi, C.A. Oyelami, The use of index tests to determine the mechanical properties of crushed aggregates from Precambrian basement complex rocks, Ado-Ekiti, SW Nigeria. Journal of African Earth Sciences 129, 659-667 (2017). DOI: https://doi.org/10.1016/j.jafrearsci.2017.02.013.
  • [19] M. Ahmad, M.K. Ansari, L.K. Sharma, R. Singh, T.N. Singh, Correlation between Strength and Durability Indices of Rocks – Soft Computing Approach. Procedia Engineering 191, 458-466 (2017). DOI: https://doi.org/10.1016/j.proeng.2017.05.204.
  • [20] A. Teymen, Estimation of Los Angeles abrasion resistance of igneous rocks from mechanical aggregate properties. Bulletin of Engineering Geology and the Environment 78, 837-846 (2019). DOI: https://doi.org/10.1007/s10064-017-1134-0.
  • [21] M. Kamani, R. Ajalloeian, Evaluation of the mechanical degradation of carbonate aggregate by rock strength tests. Journal of Rock Mechanics and Geotechnical Engineering 11 (1), 121-134 (2019). DOI: https://doi.org/10.1016/j.jrmge.2018.05.007.
  • [22] M.K. Esfahani, M. Kamani, R. Ajalloeian, An investigation of the general relationships between abrasion resistance of aggregates and rock aggregate properties. Bulletin of Engineering Geology and the Environment 78, 3959-3968 (2019). DOI: https://doi.org/10.1007/s10064-018-1366-7.
  • [23] M. Asadi, A. Taghavi Ghalesari, S. Kumar, Machine learning techniques for estimation of Los Angeles abrasion value of rock aggregates. European Journal of Environmental and Civil Engineering, (2019). DOI: https://doi.org/10.1080/19648189.2019.1690585.
  • [24] U. Åkesson, J.E. Lindqvist, M. Göransson, J. Stigh, Relationship between texture and mechanical properties of granites, central Sweden, by use of image-analyzing techniques. Bulletin of Engineering Geology and the Environment 60, 277-284 (2001). DOI: https://doi.org/10.1007/s100640100105.
  • [25] F. Röthlisberger, J. Däppen, E. Kurzen, E. Würsch, Los Angeles Prüfung für Gleisschotter – Aussagekraft und Folgerung. Eisenbahntechnische Rundschau 54 (6), 355-361 (2005).
  • [26] F.N. Okonta, Relationships Between Abrasion Index and Shape Properties of Progressively Abraded Dolerite Railway Ballasts. Rock Mechanics and Rock Engineering 47, 1335-1344 (23014). DOI: https://doi.org/10.1007/s00603-013-0474-8.
  • [27] M. Risnen, Relationships between texture and mechanical properties of hybrid rocks from the Jaala–Iitti complex, southeastern Finland. Engineering Geology 74 (3-4), 197-211 (2004). DOI: https://doi.org/10.1016/j.enggeo.2004.03.009.
  • [28] H. Liu, S. Kou, P.A. Lindqvist, Microscope rock texture characterization and simulation of rock aggregate properties. Technical report SGU project 60-1362/2004, Geological Survey of Sweden, (2005).
  • [29] J. Stålheim, Comparative study of established test methods for aggregate strength and durability of Archean rocks from Botswana. Uppsala Universitet, Report No: W13044, (2014).
  • [30] I.W.T.P Dayarathna, U.G.A. Puswewala, A.M.K.B. Abeysinghe, L.P.S. Rohitha, Relationship between Los Angeles Abrasion Value and Mineral Content of Metamorphic Rocks. International Symposium on Earth Resources Management and Environment (ISERME 2017), Wadduwa, Sri Lanka, (2017).
  • [31] V. Hofer, H. Bach, Statistical monitoring for continual quality control of railway ballast. Expert Systems with Applications 42 (22), 8557-8572 (2015). DOI: https://doi.org/10.1016/j.eswa.2015.07.011.
  • [32] AASHTO T104, Standard Method of Test for Soundness of Aggregate by Use of Sodium Sulfate or Magnesium Sulfate. American Association of State Highway and Transportation Officials, (2003).
  • [33] TS EN 1367-1, Tests for thermal and weathering properties of aggregates – Part 1: Determination of resistance to freezing and thawing. Turkish Standards Institution, Ankara, (2008).
  • [34] ASTM D6035/D6035M-13, Standard Test Method for Determining the Effect of Freeze-Thaw on Hydraulic Conductivity of Compacted or Intact Soil Specimens Using a Flexible Wall Permeameter. ASTM International, West Conshohocken, PA, (2013).
  • [35] TS EN 1367-2, Tests for thermal and weathering properties of aggregates – Part 2: Magnesium sulfate test. Turkish Standards Institution, Ankara, (2010).
  • [36] ASTM C88/C88M-18, Standard Test Method for Soundness of Aggregates by Use of Sodium Sulfate or Magnesium Sulfate. ASTM International, West Conshohocken, PA, (2018).
  • [37] S. Geving, J.V. Thue, Fuktibygninger (Moisture in buildings, in Norwegian). NBI handbook 50. Oslo: Norwegian Building Research Institute, (2002).
  • [38] J. Ruedrich, S. Siegesmund, Salt and ice crystallisation in porous sandstones. Environmental Geology 52, 225-249 (2007). DOI: https://doi.org/10.1007/s00254-006-0585-6.
  • [39] H. Ouacha, A. Ben-Moussa, J. Simao, The salt crystallization weathering of building rocks of the archaeological sites calcarenites of north-western morocco (lixus, banasa and thamusida). European Scientific Journal 9 (18) 282-290 (2013).
  • [40] H.C. Helgeson, J.M. Delany, H.W. Nesbitt et al., Summary and critique of the thermodynamic properties of rockforming minerals. American Journal of Science 278A, 1-229 (1978).
  • [41] G.D. Price, N.L. Ross, The stability of minerals; The mineralogical society series 3. Kluwer Academic Publishers, ISBN: 0-412-44150-0, (1992).
  • [42] B. Vásárhelyi, P. Ván, Influence of water content on the strength of rock. Engineering Geology 84 (1-2), 70-74 (2006). DOI: https://doi.org/10.1016/j.enggeo.2005.11.011.
  • [43] P.W. Jayawickrama, S. Hossain, A.R. Hoare, Long-term Research on Bituminous Coarse Aggregate: Use of Microdeval Test for Project Level Aggregate Quality Control. Texas Technical University, Research Report, Report No: FHWA/TX-06/0-1707-9, 89 pp, (2007).
  • [44] C.A. Rogers, M.L. Bailey, B. Price, Micro-Deval Test for Evaluating the Quality of Fine Aggregate for Concrete and Asphalt. Transportation Research Record 1301, 68-76 (1991).
  • [45] F.W. Phillips, Comparative analysis between the magnesium sulfate soundness and Micro-Deval tests in the evaluation of bituminous aggregates. Master’s Thesis, Texas Tech University, Lubbock, TX, USA, (2000).
  • [46] D.W. Fowler, J.J. Allen, A. Lange, P. Range, The Prediction of Coarse Aggregate Performance by Micro-Deval and Other Aggregate Tests. Research Report in International Center for aggregates research, (ICAR), Report No: ICAR 507-1F, (2006).
  • [47] ISRM, The complete ISRM suggested methods for rock characterization, testing and monitoring: 1974-2006. In: Ulusay R, Hudson JA(eds) Suggested methods prepared by the commission on testing methods. Int. Soc. Rock Mech. (ISRM), Ankara, Turkey, (2007).
  • [48] BS 812-112, British standard: Testing aggregates, method for determination of aggregate impact value (AIV), (1990).
  • [49] TS EN 1097-2, Tests for mechanical and physical properties of aggregates – Part 2: Methods for the determination of resistance to fragmentation. Turkish Standards Institution, Ankara, (2010).
  • [50] TS EN 1097-1, Tests for mechanical and physical properties of aggregates – Part 1: Determination of the resistance to wear (micro-Deval). Turkish Standards Institution, Ankara, (2011).
  • [51] M.L. Larrea, S.M. Castro, E.A. Bjerg, A software solution for point counting. Petrographic thin section analysis as a case study. Arab. J. Geosci. 7, 2981-2989 (2014). DOI: https://doi.org/10.1007/s12517-013-1032-0.
  • [52] BS EN 933-3, Tests for geometrical properties of aggregates; Determination of particle shape. Flakiness Index, British Standards Institution, (2012).
  • [53] E. Broch, J.A. Franklin, The Point-Load Strength Test. International Journal of Rock Mechanics and Mining Sciences 9 (6), 669-697 (1972). DOI: https://doi.org/10.1016/0148-9062(72)90030-7.
  • [54] ASTM D692/D692M-20, Standard Specification for Coarse Aggregate for Asphalt Paving Mixtures. ASTM International, West Conshohocken, PA, (2020).
  • [55] I. Rigopoulos, B. Tsikouras, P. Pomonis K. Hatzipanagiotou, Determination of the interrelations between the engineering parameters of construction aggregates from ophiolite complexes of Greece using factor analysis. Constr. Build. Mater. 49, 747-757 (2013). DOI: https://doi.org/10.1016/j.conbuildmat.2013.08.065.
  • [56] S. Adomako, C.J. Engelsen, R.T. Thorstensen, D.A. Barbieri, Review of the relationship between aggregates geology and Los Angeles and micro-Deval tests. Bull Eng Geol Environ. 80, 1963-1980 (2021). DOI: https://doi.org/10.1007/s10064-020-02097-y.
  • [57] J.M.R. Fernlund, 3-D image analysis size and shape method applied to the evaluation of the Los Angeles test. Engineering Geology. 77 (1-2), 57-67 (2005). DOI: https://doi.org/10.1016/j.enggeo.2004.08.002.
  • [58] P. Strzałkowski, U. Kaźmierczak, Wear and Fragmentation Resistance of Mineral Aggregates – A Review of Micro-Deval and Los Angeles Tests. Materials 14 (18), 5456 (2021). DOI: https://doi.org/10.3390/ma14185456.
  • [59] E. Erichsen, A. Ulvik, K. Sævik, Mechanical Degradation of Aggregate by the Los Angeles-, the Micro-Deval- and the Nordic Test Methods. Rock Mech. Rock Eng. 44, 333 (2011). DOI: https://doi.org/10.1007/s00603-011-0140-y.
  • [60] T.Y. Irfan, Aggregate properties and resources of granitic rocks for use in concrete in Hong Kong. Quarterly Journal of Engineering Geology 27, 25-38 (1994). DOI: https://doi.org/10.1144/GSL.QJEGH.1994.027.P1.05.
  • [61] A.A Al Harthi, Y.E. Abo Saada, Wadi natural aggregates in western Saudi Arabia for use in concrete. Bulletin of the International Association of Engineering Geology – Bulletin de l’Association Internationale de Géologie de l’Ingénieur 55, 27-37 (1997). DOI: https://doi.org/10.1007/BF02635406.
  • [62] G. Koukis, N. Sabatakakis, A. Spyropoulos, Resistance variation of low-quality aggregates. Bulletin of Engineering Geology and the Environment. 66, 457-466 (2007). DOI: https://doi.org/10.1007/s10064-007-0098-x.
  • [63] P.W. Jayawickrama, Limitations on the Use of Aggregate Sulfate Soundness for the Prediction of Field Performance of Hmac and Seal Coat Pavement Surfaces, Texasn Technical University, Texas Department of Transportation, Report No: 118D91-1929, 88 pp, (1992).
  • [64] C. Ferreira, Gene expression programming: A new adaptive algorithm for solving problems. Complex Systems 13 (2), 87-129 (2001).
  • [65] A.I. Lawal, M.A. Idris, An artificial neural network-based mathematical model for the prediction of blast-induced ground vibrations. International Journal of Environmental Studies 77 (2), 318-334 (2020). DOI: https://doi.org/10.1080/00207233.2019.1662186.
  • [66] M. Onifade, A.I. Lawal, E.A. Aladejare, S. Bada, M.A. Idris, Prediction of gross calorific value of solid fuels from their proximate analysis using soft computing and regression analysis. International Journal of Coal Preparation and Utilization, (2019). DOI: https://doi.org/10.1080/19392699.2019.1695605.
  • [67] E. Köken, S. Top, A. Özarslan, Assessment of Rock Aggregate Quality Through the Analytic Hierarchy Process (AHP). Geotechnical and Geological Engineering 38, 5075-5096 (2020). DOI: https://doi.org/10.1007/s10706-020-01349-8.
  • [68] D.Y. Lee, Absorption of asphalt into porous aggregates. Strategic Highway Res. Prog. Report (No: SHRP-A/UIR 90–009, Washington, (1990).
  • [69] A.R. Tarrer, V. Wagh, The effect of physical and chemical characteristics of the aggregate in bonding. Strategic Highway Res. Prog. Report No: SHRP-A/UIR 97–507, Washington, (1991).
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-10ecb63e-ffc7-463a-ac42-469c30db34c9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.