PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Metody zagospodarowania osadów ściekowych. Zagrożenia i szanse

Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
Sewage sludge management methods. Challenges and opportunities
Języki publikacji
PL
Abstrakty
PL
Wszystkie metody zagospodarowania osadów ściekowych można zaliczyć do dwóch podstawowych grup: przetwarzanie wysokotemperaturowe oraz biologiczną i chemiczną stabilizację. Do najbardziej popularnych metod zagospodarowania należą: suszenie, dezynfekcja wykorzystanie w rolnictwie, spopielanie lub piroliza z odzyskiem stałych i płynnych pozostałości procesowych, odzysk fosforu, odzysk biogazu, wykorzystanie w budownictwie oraz, najmniej proekologiczne, składowanie. Obecnie do najbardziej popularnych metod zagospodarowania należą spopielanie i składowanie. Metoda zagospodarowania osadów ściekowych jest uwarunkowana przestrzeganiem aktów prawnych dotyczących zagospodarowania osadów ściekowych. W dyrektywach UE zestawione są informacje o najwyższych dopuszczalnych stężeniach substancji zanieczyszczających, które mogą być wprowadzane do środowiska oraz najważniejsze deklaracje dotyczące zagospodarowania osadów ściekowych oraz ich monitoringu.
EN
All sludge management methods can be divided into two basic groups: high-temperature processing, and biological and chemical stabilization. The most popular management methods include: drying, disinfection, agricultural use, burning or pyrolysis with the recovery of solid and liquid process residues, phosphorus recovery, biogas recovery, use in the construction industry, and the least pro-ecological landfilling. At present, burning and landfilling are the most popular methods. Sewage sludge management method is determined by compliance with the law connected with management methods. EU directives contain information concerning highest allowable concentrations of contaminants and main statement concerning sewage sludge management methods and their monitoring.
Rocznik
Strony
15--32
Opis fizyczny
Bibliogr. 48 poz.
Twórcy
autor
  • Politechnika Gdańska, Wydział Chemiczny, Katedra Chemii Analitycznej, Tel: +48 58 347 21 10
autor
  • Politechnika Gdańska, Wydział Chemiczny, Katedra Chemii Analitycznej, Tel: +48 58 347 21 10
Bibliografia
  • 1. M. Samolada and A. Zabaniotou, "Comparative assessment of municipal sewage sludge incineration, gasification and pyrolysis for a sustainable sludge-to-energy management in Greece," Waste Management, no. 34, pp. 411-420, 2014.
  • 2. A. Kelessidis and A. Stasinakis, "Comparative study of the methods used for treatment and final disposal of sewage sludge in European countries," Waste Management, no. 32, pp. 1186-1195, 2012.
  • 3. T. Nakakubo, A. Tokai and K. Ohno, "Comparative assessment of technological systems for recycling sludge and food waste aimed at greenhouse gas emissions reduction and phosphorus recovery," Journal of Cleaner Production, no. 32, pp. 157-172, 2012.
  • 4. C. Maozhe, D. Blanc, M. Gautier, J. Mehu and R. Gourdon, "Environmental and technical assessments of the potential utilization of sewage sludge ashes (SSAs) as secondary raw materials in construction," Waste Management, no. 33, pp. 1268-1275, 2013.
  • 5. G. Houillon and O. Jolliet, "Life cycle assessment of processes for the treatment of wastewater urban sludge: energy and global warming analysis," Journal of Cleaner Production, no. 13, pp. 287-299, 2005.
  • 6. M. Garrido-Baserba, M. Molinos-Senante, J. Abelleira-Pereira, L. Fdez- Güelfo, M. Poch and F. Hernández-Sancho, "Selecting sewage sludge treatment alternatives in modern wastewater treatment plants using environmental decision support systems," Journal of Cleaner Production, no. doi:10.1016/j.jclepro.2014.11.021, 2014.
  • 7. C. Xu, W. Chen and J. Hong, "Life-cycle environmental and economic assessment of sewage sludge treatment in China," Journal of Cleaner Production, no. 67, pp. 79-87, 2014.
  • 8. S. Donatello and C. Cheeseman, "Recycling and recovery routes for incinerated sewage sludge ash (ISSA): A review," Waste Management, no. 33, pp. 2328-2340, 2013.
  • 9. N. Mills, P. Pearce, J. Farrow, R. Thorpe and N. Kirkby, "Environmental & economic life cycle assessment of current & future sewage sludge to energy technologies," Waste Management, no. 34, pp. 185-195, 2014.
  • 10. J. Hong, C. Xu, J. Hong, X. Tan and W. Chen, "Life cycle assessment of sewage sludge co-incineration in a coal-based power station," Waste Management, no. 33, pp. 1843-1852, 2013.
  • 11. C. Wu, M. Song, B. Jin, Y. Wu and Y. Huang, "Effect of biomass addition on the surface and adsorption characterization of carbon-based adsorbents from sewage sludge," Journal of Environmental Sciences, no. 25, pp. 405-412, 2013.
  • 12. B. M. Cieślik, J. Namieśnik and P. Konieczka, "Review of sewage sludge management: standards, regulations and analytical methods," Journal of Cleaner Production, pp. 1-15, 2014.
  • 13. N. Ferreiro-Domínguez, A. Rigueiro-Rodríguez, E. Bianchetto and M. Mosquera-Losada, "Effect of lime and sewage sludge fertilisation on tree and understory interaction in a silvopastoral system," Agriculture, Ecosystems and Environment, no. 188, pp. 72-79, 2014.
  • 14. P. Quevauviller, "Legislative framework for groundwater protection against chemical pollution and it's links with analytical features regarding inorganic substances," Ecological Chemistry and Engineering S, no. 5-6, pp. 485-502, 2005.
  • 15. E. Wolff, W. K. Schwabe and S. V. Conceição, "Utilization of water treatment plant sludge in structural ceramics," Journal of Cleaner Production, no. 96, 2014.
  • 16. P. Pavsic, A. Mladenovic, A. Mauko, S. Kramar, M. Dolenec, E. Voncina, K. Pavsic Vrtac and P. Bukovec, "Sewage sludge/biomass ash based products for sustainable construction," Journal of Cleaner Production, no. 67, pp. 117-124, 2014.
  • 17. M. Kapshe, P. Kuriakose, G. Srivastava and A. Surjan, "Analysing the co-benefits: case of municipal sewage management at Surat, India," Journal of Cleaner Production, no. 58, pp. 51-60, 2013.
  • 18. D.-j. Niu, H. Huang, X.-h. Dai and Y.-C. Zhao, "Greenhouse gases emissions accounting for typical sewage sludge digestion with energy utilization and residue land application in China," Waste Management, no. 33, pp. 123-128, 2013.
  • 19. H. Liu, H. Hu, G. Luo, A. Li, M. Xu and H. Yao, "Enhancement of hydrogen production in steam gasification of sewage sludge by reusing the calcium in lime-conditioned sludge," International journal of hydrogen energy, no. 38, pp. 1332-1341, 2013.
  • 20. W. Deng and Y. Su, "Experimental study on agitated drying characteristics of sewage sludge under the effects of different additive agents," Journal of Environmental Sciences, no. 26, pp. 1523-1529, 2014.
  • 21. E. Vega, H. Monclús, R. Gonzalez-Olmos and M. J. Martin, "Optimizing chemical conditioning for odour removal of undigested sewage sludge in drying processes," Journal of Environmental Management, no. 150, pp. 111-119, 2015.
  • 22. M. Munoz, M. Gomez-rico and R. Font, "Use of thermogravimetry for single characterisation of samples of thecomposting process from sewage sludge," Journal of Analytical and Applied Pyrolysis, no. 103, pp. 261-267, 2013.
  • 23. L. Cai, T.-B. Chen, D. Gao, G.-D. Zheng, H.-T. Liu and T.-H. Pan, "Influence of forced air volume on water evaporation during sewage sludge bio-drying," Water research, no. 47, pp. 4767-4773, 2013.
  • 24. J. Kostecka, G. Pączka, M. Garczyńska, „Wykorzystanie wermikompostowania do zagospodarowania odpadów organicznych w gospodarstwach domowych”, Inżynieria i Ochrona Środowiska, no. 1, pp. 21-30, 2014.
  • 25. L. Wang, Z. Zheng, Y. Zhang, J. Chao, Y. Gao, X. Luo and J. Zhang, "Biostabilization enhancement of heavy metals during the vermiremediation of sewage sludge with passivant," Journal of Hazardous Materials, no. 244, pp. 1-9, 2013.
  • 26. A. Lag-Brotons, I. Gomez, J. Navarro-Pedren, A. Mayoral and M. Curt, "Sewage sludge compost use in bioenergy production - a case study on the effects on Cynara cardunculus L energy crop," Journal of Cleaner Production, no. 79, pp. 32-40, 2014.
  • 27. L. D. Nghiem, T. T. Nguyen, P. Manassa, S. K. Fitzgerald, M. Dawson and S. Vierboom, "Co-digestion of sewage sludge and crude glycerol for on-demand biogas production," International Biodeterioration & Biodegradation, no. 95, pp. 160-166, 2014.
  • 28. S. Borowski, "Co-digestion of the hydromechanically separated organic fraction of municipal solid waste with sewage sludge," Journal of Environmental Management, no. 147, pp. 87-94, 2015.
  • 29. B. Scaglia, G. D'Imporzano, G. Garuti, M. Negri and F. Adani, "Sanitation ability of anaerobic digestion performed at different temperature on sewage sludge," Science of the Total Environment, no. 466-467, pp. 888-897, 2014.
  • 30. H. U. Cho, S. K. Park, J. H. Ha and J. M. Park, "An innovative sewage sludge reduction by using a combined mesophilic anaerobic and thermophilic aerobic process with thermal alkaline treatment and sludge recirculation," Journal of Environmental Management, no. 129, pp. 274-282, 2013.
  • 31. S. Righi, L. Oliviero, M. Pedrini, A. Buscaroli and C. Della Casa, "Life Cycle Assessment of management systems for sewage sludge and food waste: centralized and decentralized approaches," Journal of Cleaner Production, no. 44, pp. 8-17, 2013.
  • 32. E. C. Rada, M. Ragazzi, S. Villott and V. Torrerra, "Sewage sludge drying by energy recovery from OFMSW composting: Preliminary feasibility evaluation," Waste Management, no. 34, pp. 859-866, 2014.
  • 33. M. Azuara, I. Fonts, F. Bimbela, M. Murillo and G. Gea, "Catalytic post-treatment of the vapors from sewage sludge pyrolysis by means of γ-Al2O3: Effect on the liquid product properties," Fuel Processing Technology, no. 130, pp. 252-262, 2015.
  • 34. L.-E. Ĺmand and H. Kassman, "Decreased PCDD/F formation when co-firing a waste fuel and biomass in a CFB boiler by addition of sulphates or municipal sewage sludge," Waste Management, no. 33, pp. 1729-1739, 2013.
  • 35. Q. Liu, P. Jiang, J. Zhao, B. Zhang, H. Bian and G. Qian, "Life cycle assessment of an industrial symbiosis based on energy recovery from dried sludge and used oil," Journal of Cleaner Production, no. 19, pp. 1700-1708, 2011.
  • 36. C. Valderrama, R. Granados, J. L. Cortina, C. Gasol, M. Guillem and A. Josa, "Comparative LCA of sewage sludge valorisation as both fuel and raw material substitute in clinker production," Journal of Cleaner Production, no. 51, pp. 205-213, 2013.
  • 37. N. H. Rodríguez, S. Martínez-Ramírez, M. T. Blanco-Varela, S. Donatello, M. Guillem, J. Puig, C. Fos, L. Enric and J. Flores, "The effect of using thermally dried sewage sludge as an alternative fuel on Portland cement clinker production," Journal of Cleaner Production, no. 52, pp. 94-102, 2013.
  • 38. J. Cusidó and L. Cremades, "Environmental effects of using clay bricks produced with sewage sludge: Leachability and toxicity studies," Waste Management, no. 32, pp. 1202-1208, 2012.
  • 39. N. Gil-Lalaguna, J. Sanchez, M. Murillo, M. Atienza-Martínez and G. Gea, "Energetic assessment of air-steam gasification of sewage sludge and of the integration of sewage sludge pyrolysis and air-steam gasification of char," Energy, no. 76, pp. 652-662, 2014.
  • 40. Y. Han, G. Hwang, ,. D. Kim, S. Park and H. Kim, "Porous Ca-based beads or bents for simultaneous removal of SO2, fine particulate matters, and heavy metals from pilot plant sewage sludge incineration," Journal of Hazardous Materials, no. 283, pp. 44-52, 2015.
  • 41. A. Méndez, M. Terradillos and G. Gascó, "Physicochemical and agronomic properties of biochar from sewage sludge pyrolysed at different temperatures," Journal of Analytical and Applied Pyrolysis, no. 102, pp. 124-130, 2013.
  • 42. M. A. Martinez, G. Gea, J. Arauzo, S. R. Kersten, A. Maarten and J. Kootstra, "Phosphorus recovery from sewage sludge char ash," biomass and bioenergy, no. 65, pp. 42-50, 2014.
  • 43. Q. Xie, P. Peng, S. Liu, M. Min, Y. Cheng, Y. Wan, Y. Li, X. Lin, Y. Liu, P. Chen and R. Ruan, "Fast microwave-assisted catalytic pyrolysis of sewage sludge for bio-oil production," Bioresource Technology, no. 172, pp. 162-168, 2014.
  • 44. Y. Wang, G. Chen, Y. Li, B. Yan and D. Pan, "Experimental study of the bio-oil production from sewage sludge by supercritical conversion process," Waste Management, no. 33, pp. 2408-2415, 2013.
  • 45. J. Yang, Y. Shi, X. Yang, M. Liang, Y. Li, Y. Li and N. Ye, "Durability of autoclaved construction materials of sewage sludge–cement–fly ash–furnace slag," Construction and Building Materials, no. 48, pp. 398-405, 2013.
  • 46. A. Mendez, A. Tarquis, A. Saa-Requejo, F. Guerrero and G. Gasco, "Influence of pyrolysis temperature on composted sewage sludge biochar priming effect in a loamy soil," Chemosphere, no. 93, pp. 668-676, 2013.
  • 47. H. Weigand, M. Bertau, W. Hübner, F. Bohndick and A. Bruckert, "RecoPhos: Full-scale fertilizer production from sewage sludge ash," Waste Management, no. 33, pp. 540-544, 2013.
  • 48. H. Xu, P. He, W. Gu, G. Wang and L. Shao, "Recovery of phosphorus as struvite from sewage sludge ash," Journal of Environmental Science, no. 24, pp. 1533-1538, 2012.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-10ea830a-b492-4105-8eba-945540054436
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.