PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Thermal creep stress and strain analysis in a non-homogeneous spherical shell

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The purpose of this paper is to present study of thermal creep stress and strain rates in a non-homogeneous spherical shell by using Seth’s transition theory. Seth’s transition theory is applied to the problem of creep stresses and strain rates in the non-homogeneous spherical shell under steady-state temperature. Neither the yield criterion nor the associated flow rule is assumed here. With the introduction of thermal effect, values of circumferential stress decrease at the external surface as well as internal surface of the spherical shell. It means that the temperature dependent materials minimize the possibility of fracture at the internal surface of the spherical shell. The model proposed in this paper is used commonly as a design of chemical and oil plants, industrial gases and stream turbines, high speed structures involving aerodynamic heating.
Słowa kluczowe
Rocznik
Strony
1155--1165
Opis fizyczny
Bibliogr. 18 poz., rys.
Twórcy
autor
  • Department of Mathematics, Faculty of Science and Technology, ICFAI University Baddi, Solan, India
autor
  • Department of Mathematics, Punjabi University Patiala, Punjab, India
  • Department of Mathematics, Guru Nanak Dev Engineering College, Ludhiana, Punjab, India
autor
  • Research Scholar, IKG Punjab Technical University Kapurthala, Punjab, India
Bibliografia
  • 1. Hamed E., Bradford M.A., Gilbert R.I., 2010, Nonlinear long-term behaviour of spherical shallow thin-walled concrete shells of revolution, International Journal of Solids and Structures, 47, 2, 204-215
  • 2. Kar V.R., Panda S.K., 2016, Nonlinear thermo-mechanical deformation behaviour of P-FGM shallow spherical shell panel, Chinese Journal of Aeronautics, 29, 1, 173-183
  • 3. Kashkoli M.D., Nejad M.Z., 2014, Effect of heat flux on creep stresses of thick walled cylindrical pressure vessels, Journal of Applied Research and Technology, 12, 3, 585-597
  • 4. Kellogg L.H., King S.D., 1997, The effect of temperature dependent viscosity on the structure of new plumes in the mantle: Results of a finite element model in a spherical, axisymmetric shell, Earth and Planetary Science Letters, 148, 1/2, 13-26
  • 5. Levitsky M., Shaffer, B.W., 1975, Residual thermal stresses in a solid sphere from a thermosetting material, Journal of Applied Mechanics, Transactions of ASME, 42, 3, 651-655
  • 6. Miller G.K., 1995, Stresses in a spherical pressure vessel undergoing creep and dimensional changes, International Journal of Solids and Structures, 32, 14, 2077-2093
  • 7. Odquist F.K.G., 1974, Mathematical Theory of Creep and Creep Rupture, Clarendon Press, Oxford
  • 8. Olszak W., 1960, Non-homogeneity in elasticity and plasticity, ZAMM, 40, 10/11, 522-523
  • 9. Parkus H., 1976, Thermo-Elasticity, Springer-Verlag Wien, New York, USA
  • 10. Penny R.K., 1967, The creep of spherical shells containing discontinuities, International Journal of Mechanical Sciences, 9, 6, 373-388
  • 11. Seth B.R., 1962, Transition theory of elastic-plastic deformation, creep and relaxation, Nature, 195, 896-897, DOI: 10.1038/195896a0
  • 12. Seth B. R., 1966, Measure concept in mechanics, International Journal of Non-Linear Mechanics, 1, 1, 35-40
  • 13. Sokolnikoff I.S., 1946, Mathematical Theory of Elasticity, 1st edition, Mc-Graw Hill Book Company, Inc., New York, 60-76
  • 14. Thakur P., 2011, Creep transition stresses of a thick isotropic spherical shell by finitesimal deformation under steady state of temperature and internal pressure, Thermal Science, 15, 2, S157-S165
  • 15. Thakur P., 2014, Steady thermal stress and strain rates in a circular cylinder with nonhomogeneous compressibility subjected to thermal load, Thermal Science, 18, 1, S81-S92
  • 16. Thakur P., Singh S.B., Kaur J., 2016, Thermal creep stresses and strain rates in a circular disc with shaft having variable density, Engineering Computation, 33, 3, 698-712
  • 17. Thakur P., Gupta N., Singh S.B., 2017, Creep strain rates analysis in cylinder under temperature gradient for different material, Engineering Computations, 34, 3, DOI: 10.1108/EC-05-2016- -0159
  • 18. You L.H., Zhang J.J., You X.Y., 2005, Elastic analysis of internally pressurized thick-walled spherical pressure vessels of functionally graded materials, International Journal of Pressure Vessels and Piping, 82, 5, 347-354
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-10e94077-cbd2-4cd2-b947-cd9068c114a7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.