PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Grafting Modification of Natural Fibres with Cyclodextrin

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Szczepienie włókien naturalnych cyklodekstryną
Języki publikacji
EN
Abstrakty
EN
Over the years, a multiplicity of grafting modification techniques have been studied to combine the adsorption and wettability of natural fibres with the capacity of cyclodextrins (CDs) to form inclusion complexes. The fixation of CDs on fibres is possible using crosslinking agents or reactive derivatives of cyclodextrins. Various crosslinking chemicals are suitable to bind the hydroxyl groups of non-reactive cyclodextrins with those of natural fibres by way of spraying, padding, surface coating, and impregnation. Nano-composite dense polimer film could also be formed to anchor the cyclodextrin on the natural fibre surface by the methods of hydrogen binding or covalent binding in sol-gel. A vinyl monomer such as glycidyl methacrylate was used to form polymer coatings due to the pendant epoxy group coupled with the –OH of cyclodextrin and natural fibres. This review also focused on the derivatives of CDs with the reactive group reacting with the hydroxyl groups of natural fibres.
PL
Przez lata badano wiele technik szczepienia, aby połączyć adsorpcję i zwilżalność włókien naturalnych ze zdolnością cyklodekstryn (CD) do tworzenia kompleksów inkluzyjnych. Utrwalanie CD na włóknach jest możliwe przy użyciu środków sieciujących lub reaktywnych pochodnych cyklodekstryn. Różne chemikalia sieciujące są odpowiednie do wiązania grup hydroksylowych niereaktywnych cyklodekstryn z tymi z włókien naturalnych poprzez natryskiwanie, napawanie, powlekanie powierzchni i impregnację. W celu zakotwiczenia cyklodekstryny na powierzchni włókien naturalnych metodami wiązania wodoru lub wiązania kowalencyjnego w zolu-żelu można zastosować możliwość tworzenia nano-kompozytowej folii polimerowej. W pracy do utworzenia powłok polimerowych użyto monomeru winylu – metakrylan glicydylu. W artykule skupiono się również na pochodnych CD z grupą reaktywną reagującą z grupami hydroksylowymi włókien naturalnych.
Rocznik
Strony
15--23
Opis fizyczny
Bibliogr. 71 poz., rys.
Twórcy
autor
  • Northwestern Polytechnical University, School of Science, Key Laboratory of Space Applied Physics and Chemistry, and Key Laboratory of Polymer Science and Technology, Ministry of Education, Shaanxi province, Xi’an, 710129, Shaanxi, China
  • Xi’an Polytechnic University, College of Textile Science and Engineering, Xi’an, 710048, Shaanxi, China
autor
  • Northwestern Polytechnical University, School of Science, Key Laboratory of Space Applied Physics and Chemistry, and Key Laboratory of Polymer Science and Technology, Ministry of Education, Shaanxi province, Xi’an, 710129, Shaanxi, China
autor
  • Xi’an Polytechnic University, College of Textile Science and Engineering, Xi’an, 710048, Shaanxi, China
autor
  • Xi’an Polytechnic University, College of Textile Science and Engineering, Xi’an, 710048, Shaanxi, China
autor
  • Xi’an Polytechnic University, College of Textile Science and Engineering, Xi’an, 710048, Shaanxi, China
Bibliografia
  • 1. Wong CE, Dolzhenko AV, Lee SM, et al. Cyclodextrins: A Weapon in the Fight Against Antimicrobial Resistance. Journal of Molecular Engineering Materials 2017; 5(01):1740006.
  • 2. Ghorani B, Kadkhodaee R, Rajabzadeh G, et al. Assembly of Odour Adsorbent Nanofilters by Incorporating Cyclodextrin Molecules into Electrospun Cellulose Acetate Webs. Reactive Functional Polymers 2019; 134: 121-132.
  • 3. Morin-Crini N, Winterton P, Fourmentin S, et al. Water-Insoluble Β-Cyclodextrin–Epichlorohydrin Polymers for Removal of Pollutants from Aqueous Solutions by Sorption Processes Using Batch Studies: A Review of Inclusion Mechanisms. Progress in Polymer Science 2018;78:1-23.
  • 4. Ishiguro T, Sakata Y, Arima H, et al. Release Control of Fragrances by Complexation with Β-Cyclodextrin and Its Derivatives. Journal of Inclusion Phenomena Macrocyclic Chemistry 2018; 92(1-2): 147-155.
  • 5. Marcos X, Pérez-Casas S, Llovo J, et al. Poloxamer-Hydroxyethyl Cellulose-Α-Cyclodextrin Supramolecular Gels for Sustained Release of Griseofulvin. International Journal of Pharmaceutics 2016; 500(1-2):11-19.
  • 6. Cova TF, Murtinho D, Pais AA, et al. Combining Cellulose and Cyclodextrins: Fascinating Designs for Materials and Pharmaceutics. Frontiers in Chemistry 2018; 6: 271.
  • 7. Del Valle EM. Cyclodextrins and their Uses: A Review. Process Biochemistry 2004; 39(9): 1033-1046.
  • 8. Hedges AR. Industrial Applications of Cyclodextrins. Chemical Reviews 1998; 98(5): 2035-2044.
  • 9. Irie T, Uekama K. Pharmaceutical Applications of Cyclodextrins. III. Toxicological Issues and Safety Evaluation. Journal of Pharmaceutical Sciences 1997; 86(2): 147-162.
  • 10. Loftsson T, Brewster ME. Pharmaceutical Applications of Cyclodextrins. 1. Drug Solubilization and Stabilization. Journal of Pharmaceutical Sciences 1996; 85(10): 1017-1025.
  • 11. Li B, Dong Y, Wang P, et al. Release Behavior and Kinetic Evaluation of Formaldehyde from Cotton Clothing Fabrics Finished with DMDHEU-Based Durable Press Agents in Water and Synthetic Sweat Solution. Textile Research Journal 2016; 86(16): 1738-1749.
  • 12. Montazer M, Mehr EB. Na-Diclofenac Β-Cyclodextrin Inclusion Complex on Cotton Wound Dressing. Journal of the Textile Institute 2010; 101(5): 373-379.
  • 13. Hong KH. Preparation and Properties of Phenolic Compound/BTCA Treated Cotton Fabrics for Functional Textile Applications. Cellulose 2015; 22(3): 2129-2136.
  • 14. Voncina B, Le Marechal AM. Grafting of Cotton with Β-Cyclodextrin via Poly (Carboxylic Acid). Journal of Applied Polymer Science 2005; 96(4): 1323-1328.
  • 15. Medronho B, Andrade R, Vivod V, et al. Cyclodextrin-Grafted Cellulose: Physico-Chemical Characterization. Carbohydrate Polymers 2013; 93(1): 324-330.
  • 16. Novikov M, Thong KL, Zazali NIM, et al. Treatment of Cotton by β-Cyclodextrin/Triclosan Inclusion Complex and Factors Affecting Antimicrobial Properties. Fibers and Polymers 2018; 19(3): 548-560.
  • 17. El-Tahlawy K, El-Nagar K, Elhendawy A. Cyclodextrin-4 Hydroxy Benzophenone Inclusion Complex for UV Protective Cotton Fabric. Journal of the Textile Institute 2007; 98(5): 453-462.
  • 18. Bajpai M, Gupta P, Bajpai S. Silver (I) Ions Loaded Cyclodextrin-Grafted-Cotton Fabric with Excellent Antimicrobial Property. Fibers and Polymers 2010; 11(1): 8-13.
  • 19. Salah F, El Ghoul Y, Roudesli S. Bacteriological Effects of Functionalized Cotton Dressings. Journal of the Textile Institute 2016; 107(2): 171-181.
  • 20. Gawish S, Ramadan A, Abo El-Ola S, et al. Citric Acid used as a Cross-Linking Agent for Grafting Β-Cyclodextrin onto Wool Fabric. Polymer-Plastics Technology Engineering 2009; 48(7): 701-710.
  • 21. HajiA, Mehrizi MK,Akbarpour R. Optimization of Β-Cyclodextrin Grafting on Wool Fibers Improved by Plasma Treatment and Assessment of Antibacterial Activity of Berberine Finished Fabric. Journal of Inclusion Phenomena 2015; 81(1-2): 121-133.
  • 22. Mehraz L, Nouri M. Preparation and Characterization of Β-Cyclodextrin Grafted Silk Fabric. Journal of Natural Fibers 2018: 1-11.
  • 23. Bandyopadyay S, Das D. Retention and Sustained Release of Fragrance by Cyclodextrin Functionalized Cotton Fabric Modified using Maleic Anhydride. Flavour Fragrance Journal 2017; 32(3):207-211.
  • 24. Dehabadi VA, Buschmann H-J, Gutmann JS. A Novel Approach for Fixation of ΒCyclodextrin on Cotton Fabrics. Journal of Inclusion Phenomena Macrocyclic Chemistry 2014; 79(3-4): 459-464.
  • 25. Hebeish A, Sharaf S, Refaie R, et al. Multifinishing of Cotton Fabrics using Microwave Techniques. Research Journal of Textile Apparel 2012; 16(2): 68-81.
  • 26. Ping Z, Xin Y, Lin Z, et al. Study on Inclusion Medicine of Cotton Fabric Grafted with Β-Cyclodextrin. Journal of Textile Research 2010; 31(7): 64-68.
  • 27. Youyi X, Junmin W. Preparation and Mechanism of Β-Cycldextrin Grafted Cellulose Fiber. Journal of Textile Research 2006; 27(2): 25-28.
  • 28. Szejtli J, Zsadon B, Fenyvesi E, et al. Sorbents of Cellulose Basis Capable of Forming Inclusion Complexes and a Process for the Preparation Thereof. U.S. Patent 4,357,468. 1982-11-2.
  • 29. Neto R, Cardoso A, Silva C. Functional Substrates for the Gradual Release of Agents. Progress in Organic Coatings 2015; 78: 474-479.
  • 30. Wang C X, Chen S L. Anchoring Β-Cyclodextrin to Retain Fragrances on Cotton by Means of Heterobifunctional Reactive Dyes. Coloration Technology 2004; 120(1): 14-18.
  • 31. Agrawal P, Warmoeskerken M. Permanent Fixation of Β-Cyclodextrin on Cotton Surface-an Assessment between Innovative and Established Approaches. Journal of Applied Polymer Science 2012; 124(5): 4090-4097.
  • 32. Ismail WNW. Sol-Gel Technology for Innovative Fabric Finishing-A Review. Journal of Sol-Gel Science Technology 2016; 78(3): 698-707.
  • 33. Wang C X, Chen S L. Surface Treatment of Cotton Using Β-Cyclodextrins Sol-Gel Method. Applied Surface Science 2006; 252(18): 6348-6352.
  • 34. Wang C X, Chen S L. Surface Modification of Fabric by Sol-Gel Method. Journal of Textile Research 2005; 26(4): 24.
  • 35. Ghosh S, Chipot N. Embedding Aromatherapy Essential Oils into Textile Fabric using Β-Cyclodextrin Inclusion Compound. Indian Journal of Fibre & Textile Research 2015; 40: 140-143.
  • 36. Kettel MJ, Hildebrandt H, Schaefer K, et al. Tenside-Free Preparation of Nanogels with High Functional Β-Cyclodextrin Content. ACS nano 2012; 6(9): 8087-8093.
  • 37. Kettel MJ, Schaefer K, Groll J, et al. Nanogels with High Active Β-Cyclodextrin Content as Physical Coating System with Sustained Release Properties. ACS Applied Materials Interfaces 2014; 6(4): 2300-2311.
  • 38. Madrid JF, Abad LV. Modification of Microcrystalline Cellulose by Gamma Radiation-Induced Grafting. Radiation Physics Chemistry 2015; 115: 143-147.
  • 39. Madrid JF, Nuesca GM, Abad LV. Gamma Radiation-Induced Grafting of Glycidyl Methacrylate (GMA) onto Water Hyacinth Fibers. Radiation Physics Chemistry 2013; 85: 182-188.
  • 40. Wojnárovits L, Földváry CM, Takács E. Radiation-Induced Grafting of Cellulose for Adsorption of Hazardous Water Pollutants: A Review. Radiation Physics Chemistry 2010; 79(8): 848-862.
  • 41. Hirotsu T. Plasma Graft Polymerization of Glycidyl Methacrylate and Cyclodextrin Immobilization. Thin Solid Films 2006; 506: 173-175.
  • 42. Abdel-Halim E, Fouda MM, Hamdy I, et al. Incorporation of Chlorohexidin Diacetate into Cotton Fabrics Grafted with Glycidyl Methacrylate and Cyclodextrin. Carbohydrate Polymers 2010; 79(1): 47-53.
  • 43. Hebeish A, El-Sawy S, Ragaei M, et al. New Textiles of Biocidal Activity by Introduce Insecticide in Cotton-Poly (GMA) Copolymer Containing Β-Cd. Carbohydrate Polymers 2014; 99: 208-217.
  • 44. Desmet G, Takács E, Wojnárovits L, et al. Cellulose Functionalization via High-Energy Irradiation-Initiated Grafting of Glycidyl Methacrylate and Cyclodextrin Immobilization. Radiation Physics Chemistry 2011; 80(12): 1358-1362.
  • 45. Hiriart-Ramírez E, Contreras-García A, Garcia-Fernandez MJ, et al. Radiation Grafting of Glycidyl Methacrylate onto Cotton Gauzes for Functionalization with Cyclodextrins and Elution of Antimicrobial Agents. Cellulose 2012; 19(6): 2165-2177.
  • 46. Denter U, Schollmeyer E. Surface Modification of Synthetic and Natural Fibres by Fixation of Cyclodextrin Derivatives. Proceedings of the Eighth International Symposium on Cyclodextrins. Springer, Dordrecht, 1996: 559-564.
  • 47. Lee MH, Yoon KJ, Ko SW. Synthesis of a Vinyl Monomer Containing Β-Cyclodextrin and Grafting onto Cotton Fiber. Journal of Applied Polymer Science 2001; 80(3): 438-446.
  • 48. Nostro PL, Fratoni L, Baglioni P. Modification of a Cellulosic Fabric with Β-Cyclodextrin for Textile Finishing Applications. Journal of Inclusion Phenomena Macrocyclic Chemistry 2002; 44(1-4): 423-427.
  • 49. Reuscher H, Hirsenkorn R. BETA W7 MCT-New Ways in Surface Modification. Proceedings of the Eighth International Symposium on Cyclodextrins. Springer, Dordrecht, 1996: 553-558.
  • 50. Buschmann H, Knittel D, Schollmeyer E. Use of Cyclodextrin±Dye Complexes in Dyeing Processes. Textilveredlung 1996; 31: 115-117.
  • 51. Peila R, Migliavacca G, Aimone F, et al. A Comparison of Analytical Methods for the Quantification of a Reactive Β-Cyclodextrin Fixed onto Cotton Yarns. Cellulose 2012; 19(4): 1097-1105.
  • 52. Xiao Z, Feng N, Zhu G, et al. Preparation and Application of Citral–Monochlorotriazine-Β-Cyclodextrin Inclusion Complex Nanocapsule. Journal of The Textile Institute 2016; 107(1): 64-71.
  • 53. Hebeish A, Fouda MM, Hamdy I, et al. Preparation of Durable Insect Repellent Cotton Fabric: Limonene as Insecticide. Carbohydrate Polymers 2008;74(2): 268-273.
  • 54. Shahba AF. Production and Characterization of Novel Perfumed Curtain Fabrics. Research Journal of Textile Apparel 2008; 12(4): 31-40.
  • 55. Angela C, Luminita C, Muresan E, et al. Textile Materials Functionalised with Natural Biologically Active Compounds. Romanian Biotechnological Letters 2010; 15(5): 5538.
  • 56. Racu C, Cogeanu AM, Diaconescu RM, et al. Antimicrobial Treatments of Hemp Fibers Grafted with Β-Cyclodextrin Derivatives. Textile Research Journal 2012; 82(13): 1317-1328.
  • 57. Hebeish A, El-Hilw Z. Chemical Finishing of Cotton using Reactive Cyclodextrin. Coloration Technology 2001; 117(2): 104-110.
  • 58. Kistamah N, Carr C, Rosunee S. Surface Chemical Analysis of Tencel and Cotton Treated with a Monochlorotriazinyl (MCT) Β-Cyclodextrin Derivative. Journal of Materials Science 2006; 41(8): 2195-2200.
  • 59. Sricharussin W, Sopajaree C, Maneerung T, et al. Modification of Cotton Fabrics with Β-Cyclodextrin Derivative for Aroma Finishing. Journal of the Textile Institute 2009; 100(8): 682-687.
  • 60. Hashem M, El-Aref A, Refaie R. Cotton Fabric Bearing Cationic and Β-Cyclodextrin Moieties: A Study of the Reaction Parameters. Research Journal of Textile 2004; 8(2): 76-94.
  • 61. Abdel-Mohdy F, El-Aref A, Hashem A, et al. Monochlorotriazinyl-cyclodextrin Finished Cotton Fabric and Its Inclusion Ability Towards Some Guest Molecules. Egyptian Journal of Textile Polymer Science Technology 2005; 9(2): 85-95.
  • 62. Abdel-Mohdy F, Fouda MM, Rehan M, et al. Repellency of Controlled-Release Treated Cotton Fabrics Based on Cypermethrin and Prallethrin. Carbohydrate Polymers 2008; 73(1): 92-97.
  • 63. Chen M, Wang Y, Xie X, et al. Inclusion Complex of Monochlorotriazine-BetaCyclodextrin and Wormwood oil: Preparation, Characterization, and Finishing on Cotton Fabric. The Journal of The Textile Institute 2015; 106(1): 31-38.
  • 64. Setthayanond J, Sodsangchan C, Suwanruji P, et al. Influence of MCT-ΒCyclodextrin Treatment on Strength, Reactive Dyeing and third-hand Cigarette Smoke Odor Release Properties of Cotton Fabric. Cellulose 2017; 24(11): 5233-5250.
  • 65. Sodsangchan C, Setthayanond J, Suwanruji P. Influence of Monochlorotriazine-Β-Cyclodextrin Treatment on Dyeing and Fastness Properties of the HotDyeing Reactive Dye on Cotton. Paper presented at: Applied Mechanics and Materials, 2014.
  • 66. Sundrarajan M, Rukmani A. Biopolishing and Cyclodextrin Derivative Grafting on Cellulosic Fabric for Incorporation of Antibacterial Agent Thymol. Journal of the Textile Institute 2013; 104(2): 188-196.
  • 67. Kut D, Gunesoglu C, Orhan M. An investigation into the possibility of using cyclodextrin in crease resistant finish. FIBRES &TEXTILES in Eastern Europe 2007, 15, 2(61): 93-96.
  • 68. Hebeish A, El Shafei A, Shaarawy S. Synthesis and Characterization of Multifunctional Cotton Containing Cyclodextrin and Butylacrylate Moieties. Polymer-Plastics Technology Engineering 2009; 48(8): 839-850.
  • 69. El Shafei A, Shaarawy S, Hebeish A. Application of Reactive Cyclodextrin Poly Butyl Acrylate Preformed Polymers Containing Nano-Zno to Cotton Fabrics and their Impact on Fabric Performance. Carbohydrate Polymers 2010; 79(4): 852-857.
  • 70. Abdel-Halim E, Abdel-Mohdy F, Fouda MM, et al. Antimicrobial Activity of Monochlorotriazinyl-Β-Cyclodextrin/Chlorohexidin Diacetate Finished Cotton Fabrics. Carbohydrate Polymers 2011; 86(3): 1389-1394.
  • 71. Hebeish AA, Abdel-Halim ES, Hamdy IA, et al. Synthesis of Cotton Graft Copolymers Containing Glycidyl Methacrylate and Different Cyclodextrins Moieties Using Linear Electron Beam Radiation. Research Journal of Textile Apparel 2009; 13(3): 57-68.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-10e7d03b-a2c5-4375-9806-11119eb06666
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.