Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Studying urban outdoor comfort has become a necessary approach to achieving sustainability at multiple levels. Today, many urban projects incorporate new mitigation strategies such as green and blue patterns when it is difficult to modify urban configuration and density. This study aims to investigate urban outdoor comfort variation in a northwestern Moroccan city, where urban planning is rapidly evolving due to local socio-economic dynamics. Various urban areas were analyzed during summer conditions from two perspectives. The first one focused on studying the air quality and involved the use of Google Earth Engine platform to extract data on air pollutants (NO2, CO, formaldehyde and aerosols). Second, in-situ monitoring was carried out using four main parameters (temperature, humidity, solar illuminance and sound levels). Other factors such as urban density, urban greening and water components were also assessed. Air quality findings revealed that the main sources of air pollution were concentrated in the industrial zone and the backwater. This led to a significant impact on the air quality of the city center. The results also indicated minor effect of vegetation on the density of the pollutants studied. Based on the in-situ monitoring, results highlighted variations between different sites, which can be attributed to differences in urban morphology and the use of various plant species for urban vegetation and the water proximity. We have identified four main species on the site: Populus nigra and Platanus orientalis are deciduous trees that provide significant shade and contribute to outdoor urban comfort, resulting in a decrease of temperature by 0.8 °C compared to open bare lands where palm trees provide minimal shading. Furthermore, areas with deciduous trees experience a noise reduction of 4.6 dB compared to open bare lands. Grass and linear bushes only produce evapotranspiration benefits. In addition, we have found that proximity to water sources can reduce outdoor temperature. Green and blue strategies play an essential role in optimizing urban comfort. However, their urban implementation is not entirely effective, focusing more on aesthetic aspects than functional factors to optimize outdoor comfort. Results from the present study can be used to better influence future mitigation strategies and implement new sustainable tools.
Słowa kluczowe
Wydawca
Rocznik
Tom
Strony
1--18
Opis fizyczny
Bibliogr. 60 poz., rys., tab.
Twórcy
autor
- Biology, Environment and Sustainable Development Laboratory, ENS, Abdelmalek Essaadi University, Tetouan, Morocco, PB 638, 93150 Martil, Morocco
autor
- Biology, Environment and Sustainable Development Laboratory, ENS, Abdelmalek Essaadi University, Tetouan, Morocco, PB 638, 93150 Martil, Morocco
autor
- Laboratoy on Built Environment and Landscapes (LaBEL), National School of Architecture of Tetouan, 93040 Tetouan, Morocco
autor
- Biology, Environment and Sustainable Development Laboratory, ENS, Abdelmalek Essaadi University, Tetouan, Morocco, PB 638, 93150 Martil, Morocco
autor
- Biology, Environment and Sustainable Development Laboratory, ENS, Abdelmalek Essaadi University, Tetouan, Morocco, PB 638, 93150 Martil, Morocco
Bibliografia
- 1. Akbari, H., Pomerantz, M., Taha, H. 2001. Cool surfaces and shade trees to reduce energy use and improve air quality in urban areas. Sol. Energy 70, 295–310. https://doi.org/10.1016/S0038-092X(00)00124-0
- 2. Alberti, M. 2008. Advances in Urban Ecology. Springer US, Boston, MA. https://doi.org/10.1007/978-0-387-75510-6
- 3. Alcoforado, M.J., Andrade, H. 2008. Global Warming and the Urban Heat Island, in: Marzluff, J.M., Shulenberger, E., Endlicher, W., Alberti, M., Bradley, G., Ryan, C., Simon, U., ZumBrunnen, C. (Eds.), Urban Ecology. Springer US, Boston, MA, 249–262. https://doi.org/10.1007/978-0-387-73412-5_14
- 4. Aleksandrowicz, O.V., Kiesel, M., Mahdavi, K., Ardeshir. 2017. Current trends in urban heat island mitigation research: Observations based on a comprehensive research repository. Urban Clim. 21, 1–26. https://doi.org/10.1016/j.uclim.2017.04.002
- 5. Alonso, M., Nowak, D.J., Srivanit, M., Hokao, K. 2011. Improvements in air quality tend to occur under windy conditions. Environ. Pollut., 159, 2079–2086.
- 6. Alsalama, T., Koç, M., Isaifan, R.J. 2021. Mitigation of urban air pollution with green vegetation for sustainable cities: a review. Int. J. Glob. Warm., 25, 498. https://doi.org/10.1504/IJGW.2021.119014
- 7. Armson, D., Stringer, P., Ennos, A.R. 2012. The effect of tree shade and grass on surface and globe temperatures in an urban area. Urban For. Urban Green., 11, 245–255.
- 8. Baradaran Motie, M., Yeganeh, M., Bemanian, M. 2023. Assessment of greenery in urban canyons to enhance thermal comfort & air quality in an integrated seasonal model. Appl. Geogr., 151, 102861. https://doi.org/10.1016/j.apgeog.2022.102861
- 9. Beckett, K.P.F.-S., Peter; Taylor, G. 1998. Urban woodlands: their role in reducing the effects of particulate pollution. Environ. Pollut. Barking Essex 1987, 99, 347–360. https://doi.org/10.1016/s0269-7491(98)00016-5
- 10. Bennett, J.H.H., Clyde, A. 1973. Absorption of Gaseous Air Pollutants By a Standardized Plant Canopy. J. Air Pollut. Control Assoc. 23, 203–206. https://doi.org/10.1080/00022470.1973.10469767
- 11. Beranek, L.L., Ver, I. 1992. Noise and vibration control engineering: principles and applications. Acoust. Soc. Am., 8, 956–956.
- 12. Bigorgne, J. 2013. Les îlots de chaleur urbains à Paris – Cahier n°1. URL https://www.apur.org/fr/nos-travaux/ilots-chaleur-urbains-paris-cahier-1).
- 13. Boningari, T.S., Panagiotis G. 2016. Impact of nitrogen oxides on the environment and human health: Mn-based materials for the NOx abatement. Curr. Opin. Chem. Eng., 13, 133–141. https://doi.org/10.1016/j.coche.2016.09.004
- 14. Brunet, Y. 2017. Impact de la végétation sur le microclimat urbain et la qualité de l’air. EDP Sciences.
- 15. Campbell, N.A. 2012. Biologie. Sl Pearson.
- 16. Chen, A., Yao, X.A., Sun, R., Chen, L. 2014. Effect of urban green patterns on surface urban cool islands and its seasonal variations. Urban For. Urban Green.
- 17. Davies, M., Steadman, P., Oreszczyn, T. 2008. Strategies for the modification of the urban climate and the consequent impact on building energy use. Energy Policy 36, 4548–4551. https://doi.org/10.1016/j.enpol.2008.09.013
- 18. El Mrini A., Nachite D., Taaouati M. 2008. Interactions Physico-Naturelles Et Socio-Economique Sur Le Littoral Tetouanais (Maroc Nord Occidental).
- 19. EPA, 2021. National Ambient Air Quality Standards (NAAQS).
- 20. Escobedo, F.J., Nowak, D.J. 2009. Spatial heterogeneity and air pollution removal by an urban forest. Landsc. Urban Plan., 90, 102–110.
- 21. Fang, C.-F.L., Der-Lin, 2003. Investigation of the noise reduction provided by tree belts. Landsc. Urban Plan., 63, 187–195. https://doi.org/10.1016/s0169-2046(02)00190-1
- 22. Gao, W., Zhang, X.,. Xu, Y., Zhao, Y. 2019. Review on recent advances in nitrogen oxides emission control for industrial boilers. Fuel Process. Technol., 193, 106219.
- 23. Hassid, S., Santamouris, M., Papanikolaou, N., Linardi, A., Klitsikas, N., Georgakis, C., Assimakopoulos, D.N. 2000. The effect of the Athens heat island on air conditioning load 11.
- 24. High Commission for Planning (Ed.). 2018. Monographie de la Prefecture de M’diq-Fnideq.
- 25. Hirano, Y., Fujita, T. 2012. Evaluation of the impact of the urban heat island on residential and commercial energy consumption in Tokyo. Energy, 37, 371–383. https://doi.org/10.1016/j.energy.2011.11.018
- 26. Hirsch, Y., n.d. Caractéristiques de l’îlot de chaleur urbain et recherche d’une solution paysagère pour le site de la résidence Damrémont à Paris.
- 27. Hoek, G.V., Arnoud P., Fischer, Paul. 2000. Daily mortality and air pollution in The Netherlands. J. Air Waste Manag. Assoc. 1995, 50, 1380–1389. https://doi.org/10.1080/10473289.2000.10464182
- 28. Hwang, R.L., Lin, T.P., Matzarakis, A. 2011. Seasonal effects of urban street shading on long-term outdoor thermal comfort. Build. Environ., 46, 863–870.
- 29. INERIS, n.d. Origine et sources de pollution | PREV’AIR. URL http://www2.prevair.org/content/origine-et-sources-de-pollution.
- 30. INRS, 2022. Formaldéhyde. Formaldéhyde : de quoi parle-t-on ? - Risques - INRS. URL https://www.inrs.fr/risques/formaldehyde/formaldehyde--de-quoi-parle-t-on.html.
- 31. Khaniabadi, Y.O., Sicard, P., Takdastan, A., Hopke, P.K., Babaei, A.A., Hassanvand, M.S. 2019. Exposure to ambient carbon monoxide and its potential public health hazard in Tehran. Environ. Res. 179, 109358.
- 32. Klingberg, J., Konarska, J., Lindberg, F., Johansson, L., Thorsson, S. 2017. Mapping leaf area of urban greenery using aerial LiDAR and ground-based measurements in Gothenburg, Sweden. Urban For. Urban Green., Special feature: Turfgrass 26, 31–40. https://doi.org/10.1016/j.ufug.2017.05.011
- 33. Kragh, J. 1979. Pilot study on railway noise attenuation by belts of trees. J. Sound Vib., 66, 407–415. https://doi.org/10.1016/0022-460x(79)90859-9
- 34. Kumar, P., Kumar, P.,. Morawska, L., Martani, C. 2019. Indoor air quality and human health in Indian urban environment. Sustain. Cities Soc., 45, 221.
- 35. Lai, D., Liu, W., Gan, T., Liu, K., Chen, Q. 2019. A review of mitigating strategies to improve the thermal environment and thermal comfort in urban outdoor spaces. Sci. Total Environ., 661, 337–353. https://doi.org/10.1016/j.scitotenv.2019.01.062
- 36. Liu, Z., Zheng, S., Zhao, L. 2018. Evaluation of the ENVI-Met Vegetation Model of Four Common Tree Species in a Subtropical Hot-Humid Area. Atmosphere, 9, 198. https://doi.org/10.3390/atmos9050198
- 37. Maughan, N. 2014. Quels impacts de la mise en œuvre de trames bleues sur les services rendus par les milieux aquatiques en zones urbaines?? Sci. Eaux Territ. Numéro, 14, 70. https://doi.org/10.3917/set.014.0070
- 38. Mazdiyasni, O.A., Amir, A., Davis, S.J., Madadgar, S., Mehran, A., Ragno, E., Sadegh, M., Sengupta, A., Subimal, G.; Dhanya, C.T.; Niknejad, M. 2017. Increasing probability of mortality during Indian heat waves. Sci. Adv. 3, e1700066-NA. https://doi.org/10.1126/sciadv.1700066
- 39. McDonnell, M.J., Hahs, Amy K., Breuste, Jürgen H. 2009. Ecology of Cities and Towns: A Comparative Approach - Livres [WWW Document].
- 40. Mills, E., Wilson, D., Johansson, T.B. 1991. Getting started: no-regrets strategies for reducing greenhouse gas emissions. Energy Policy, 19, 526–542. https://doi.org/10.1016/0301-4215(91)90033-K
- 41. Nowak, D.J., Hirabayashi, S., Bodine, A., Greenfield, E. 2014. Tree and forest effects on air quality and human health in the United States. Environ. Pollut., 193, 119–129.
- 42. Nowak, D.J., Hirabayashi, S., Bodine, A., Hoehn, R. 2013. Modeled PM2.5 removal by trees in ten U.S. cities and associated health effects. Environ. Pollut., 178, 395–402.
- 43. Paoletti, E., Bardelli, T., Giovannini, G., Pecchioli, L. 2011. Air quality impact of an urban park over time. Procedia Environ. Sci., 4, 10–16.
- 44. Pugh, T.A., MacKenzie, A.R., Whyatt, J.D., Hewitt, C.N. 2012. Effectiveness of green infrastructure for improvement of air quality in urban street canyons. Environ. Sci. Technol., 46, 7692–7699.
- 45. Ramspeck, C.B., Jakob, F.E., Kennedy, S.D., Knebel, D.E., Kohloss, F.H., McBride, M.F., Modera, M.P., Nasseri, C.H., Shavit, G., Tree, D.R., Williams, T.H., Woods, J.E., Montgomery, R.D., Peterson, K.W. 2004. Ashrae standards committee, 2003-2004 30.
- 46. Rozenstein, O., Karnieli, A. 2011. Comparison of methods for land-use classification incorporating remote sensing and GIS inputs. Appl. Geogr., 31, 533–544. https://doi.org/10.1016/j.apgeog.2010.11.006
- 47. Santamouris, M. 2014. Cooling the Cities: A Review of Reflective and Green Roof Mitigation Technologies to Fight Heat Island and Improve Comfort in Urban Environments. Solar Energy.
- 48. Santamouris, M. (Ed.). 2013. Energy and Climate in the Urban Built Environment. Routledge, London. https://doi.org/10.4324/9781315073774
- 49. Shashua-Bar, L., Hoffman, M.E. 2000. Vegetation as a climatic component in the design of an urban street An empirical model for predicting the cooling effect of urban green areas with trees, 15.
- 50. Srivanit, M.H., Kazunori. 2013. Evaluating the cooling effects of greening for improving the outdoor thermal environment at an institutional campus in the summer. Build. Environ., 66, 158–172. https://doi.org/10.1016/j.buildenv.2013.04.012
- 51. Tallis, M., Taylor, G., Sinnett, D., Freer-Smith, P. 2011. Estimating the removal of atmospheric particulate pollution by the urban tree canopy of London, under current and future environments. Landsc. Urban Plan., 103, 129–138.
- 52. Thani, S.K.S.O., Mohamad, N.H.N., Abdullah, S.M.S. 2013. The Influence of Urban Landscape Morphology on the Temperature Distribution of Hot-Humid Urban Centre. Procedia - Soc. Behav. Sci., 85, 356–367. https://doi.org/10.1016/j.sbspro.2013.08.365
- 53. Tiwary, A., Sinnett, D., Peachey, C., Chalabi, Z., Vardoulakis, S., Fletcher, T., Hutchings, T.R. 2009. An integrated tool to assess the role of new planting in PM10 capture and the human health benefits: A case study in London. Environ. Pollut., 157, 2645–2653.
- 54. United Nations Environment Programme,. The History of UNEP. https://uneporgabouthistory-Unep.
- 55. Ver, I.L., B., Leo L. 2005. Noise and Vibration Control Engineering - Noise and Vibration Control Engineering, NA. https://doi.org/10.1002/9780470172568
- 56. Vidrih, B., Medved, S. 2013. Multiparametric model of urban park cooling island. Urban For. Urban Green., 12, 220–229.
- 57. Woolley, H. 2003. Urban Open Spaces. URL https://www.routledge.com/Urban-Open-Spaces/Woolley/p/book/9780419256908
- 58. World Bank, 2022. The Global Health Cost of PM2.5 Air Pollution: A Case for Action Beyond 2021. The World Bank. https://doi.org/10.1596/978-1-4648-1816-5
- 59. World Health Organization. 2021. WHO global air quality guidelines: particulate matter (PM2.5 and PM10), ozone, nitrogen dioxide, sulfur dioxide and carbon monoxide. World Health Organization.
- 60. Zhang, Z., Lv, Y., Pan, H. 2013. Cooling and humidifying effect of plant communities in subtropical urban parks. Urban For. Urban Green., 12, 323–329.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-10e7360f-9731-4d67-a258-ab1dd4201372