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Abstract: In order to solve the problem of using fragment quantity spatial 
distribution to describe fragment spatial distribution, this paper proposes a fragment 
mass probability density model to describe fragment spatial distribution. Applying 
the idea of stress gradient and velocity gradient grade in the process of explosion, 
the calculation equation of fragment direction angle at different axial positions 
of warhead is established. Based on the fractal model of natural fragment mass 
distribution in the form of Weibull function, a two-dimensional joint probability 
density model of fragment scattering space angle and fragment mass is established, 
and the model is verified by tests. The research results show that when the space 
angle  is between 90° and 100°, the theoretical calculation error of fragment mass 
distribution is 4.3%, and the theoretical calculation error of fragment quantity 
distribution is 19.4%, compared with the test results. This shows that the fragment 
mass spatial distribution is more suitable for characterizing the fragment spatial 
distribution law than the fragment quantity spatial distribution. When considering 
the characteristics of non-uniform fragment mass formed in different regions of 
warhead, the prediction accuracy of the fragment mass spatial distribution model 
established in this paper is 18.2% higher than that of previous models, which can 
more accurately reflect the fragment spatial distribution law.
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1	 Introduction

Cylindrical metal shell is a common structure of weapon warhead. The cylindrical 
metal shell will form a large number of fragments after the internal explosive 
detonates. The velocity distribution, size distribution, mass distribution and 
spatial distribution of fragments are of great value to the damage effectiveness 
evaluation of weapon and protective structure design. For a long time, scholars 
have made rich and effective achievements in the research of fragment size 
distribution, velocity distribution and mass distribution [1-7]. For fragment mass 
distribution, scholars have always used Mott equation or Payman equation to 
describe it. However, with the application of new materials and new explosives, 
a large number of tests have found that Mott equation and other theories have 
large errors in describing the fragment mass distribution [8-10]. Zhu [11] 
established a mathematical model of fragment mass distribution in the form of 
dual parameter Weibull distribution on the basis of the volume fractal dimension 
of particles proposed by Yang [12], and subsequently studied the effects of 
warhead geometry, explosive properties, shell material properties and other 
factors on shell fragmentation, solving the problem that Mott equation did not 
consider shell properties and explosive properties. 

The spatial scattering characteristics, spatial distribution of fragment quantity 
and spatial distribution of fragment mass are of great significance for describing 
the spatial distribution of fragments [13]. Shapiro equation is widely used in 
engineering because it can simply and accurately calculate the scattering angle of 
fragments, but there is a large error in the calculation results of Shapiro equation 
when describing the scattering angle of warhead end fragments [14]. In the past, 
scholars [14, 15] described the fragment spatial distribution law through the 
fragment spatial quantity density distribution. They assume that the average mass 
of fragments formed in any interval is the same, which is obviously inconsistent 
with the actual situation [16]. For the fragment mass spatial distribution, Karpp 
[17] recovered fragments from various regions of the spherical target when 
studying the fragment spatial distribution of the 105 mm high explosive (HE) 
warhead. The study found that the fragment mass spatial distribution can be 
expressed by a function that is approximate to the normal distribution function, 
but the author did not give a fragment mass spatial distribution model. Therefore, 
it is urgent to study the mathematical model to accurately describe the fragment 
spatial distribution.

Aiming at the problems in the description of fragment spatial distribution 
and based on previous research results. In this paper, firstly, the calculation 
equation of fragment direction angle formed at different axial positions of 
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warhead is established based on the idea of stress gradient and velocity gradient 
grade in the process of explosion, and the scattering of fragments in space after 
warhead explosion is obtained. Secondly, based on the fractal model of natural 
fragment mass distribution in the form of Weibull function, a two-dimensional 
joint probability density model of fragment scattering space angle and fragment 
mass is established to describe the fragment mass distribution in the fragment 
scattering space. The model is verified by fragment recovery test based on the 
principle of spherical target test, and the difference of fragment quantity and 
fragment mass in different space areas is explained.

2	 Study on Spatial Scattering Characteristics of Fragments

2.1	 Shapiro equation correction
Shapiro assumes that the warhead is composed of many rings arranged 
continuously, and the centers of the rings are on the axis of symmetry of the 
warhead shell. Detonation wave starts from the initiation point and spreads 
outward in the form of spherical wave front. As shown in Figure 1 below, the 
normal of the warhead shell forms an included angle φ1 with the symmetry axis 
of the warhead shell, and the detonation wave normal forms an included angle 
φ2 with the symmetry axis of the warhead shell. The fragment velocity direction 
angle is γ, the deflection angle θ of fragment velocity vector deviating from the 
warhead shell normal, Shapiro equation is [18]:
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where θ is the deflection angle between the fragment velocity vector and the 
normal of the warhead, φ1 is the angle formed between the normal of the warhead 
and the symmetry axis of the warhead, φ2 is the angle formed between the normal 
of the detonation wave and the symmetry axis of the warhead, v0 is the fragment 
velocity, De is the detonation velocity.

According to the geometric relationship, the fragment velocity direction 
angle is:
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where γ is the fragment velocity direction angle (the deflection angle between 
the velocity vector and y axis).

Figure 1.	 Schematic diagram of fragment scattering angle

Due to the difference in the impact of detonation wave and rarefaction wave 
on different axial positions of the shell, the fragment velocity and fragment 
scattering direction at different axial positions of the shell are different, so 
Shapiro equation cannot truly reflect the fragment scattering. The fragment 
velocity changes from positive to negative, and the divergence angle changes 
from negative to positive. From the motion equation of fluid theory, it can be 
seen that the change of velocity reflects the change of stress in the shell, so the 
fragment scattering angle can be corrected by using the term of velocity gradient.

For cylindrical shells under single point initiation at the center of the end 
face, according to Shapiro equation, the fragment velocity direction angle is:
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According to the theory put forward by Huang [19], the change rule of 
fragment velocity along the shell axis under different conditions can be described 
by Equation 3a:

F(x) = [1 – A* exp(–B* ∙ x)] ∙ [1 – C* exp(–D* ∙ (1 – x))]� (3a)

similar to the exponential form. Therefore, based on the exponential form 
equation, taking into account the influence of shell length diameter ratio and 
relative wall thickness, this paper establishes the fragment velocity distribution 
equation along the shell axis:
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where x(0 ≤ x ≤ 1) is the axial relative position of the shell. A*, B*, C*, D* and k1 are 

all undetermined constants. 
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 is

the Gurney energy related to the yield stress of the shell material [21], L/d is the 
length-diameter ratio of warhead, δ/d is the relative wall thickness of warhead, 
F(x) is the fragment velocity correction term, M is the mass of the shell and C 
is the mass of the explosive. 
x0/(x1 – x0) ≤ x ≤ x1/(x1 – x0), L = x1 – x0 needs to be defined in combination with 
Figure 1, so the fragment velocity equation is:
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According to the motion equation of the fluid, the deflection angle θ of the 
velocity vector of the fragment from the shell normal is corrected by using the 
velocity gradient term, and from the relationship between the deflection angle 
θ and the velocity direction angle γ, we can get:
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where k2(k2 > 0) is the correction factor.

2.2	 Calculation of fragment movement direction angle
In order to obtain the spatial scattering distribution of fragments along the axis of 
the warhead, taking the general structure of the kill warhead as an example, it is 
divided into three parts: arc part, cylinder part and ship tail, as shown in Figure 
2. The coordinate of a certain point on the warhead is (x, y), and the deflection 
angle between the velocity vector  and  axis of the point is γ. Taking the warhead 
centroid as the center of the circle, make a sphere with radius R, and the target 
is on the sphere. The coordinate of a fragment hitting the target is (l, h) and φ is 
the motion direction angle of the fragment at the hit point. Taking the inner wall 
curve of warhead as the research object, the geometric relationship in Figure 2 
is as follows:
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where (l, h) is the coordinate of the target hit by the fragment, (x, y) is the 
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coordinate of a certain point on the warhead, φ is the motion direction angle of 
the fragment at the hit point, R is the radius of the fragment field.

Figure 2.	 Fragment scattering diagram of warhead
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According to Equations 7 and 8:
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According to Equation 9:
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Finally:
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Combined Equation 9 and 12:
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According to Equation 7:
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Assume that the curve function of the inner wall of the warhead is:

y = y(x)� (15)

According to Equation 6:
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According to Equation 14, the fragment movement direction angle can be 
expressed as:

φ = F(x, y(x), γ (x))� (17)

where x and y are basic parameters of warhead. The following focuses on solving 
y(x).

2.3	 Numerical solution of velocity direction angle
It is difficult to measure the scattering angle of fragments in tests. The finite 
element simulation software can simulate the whole process of warhead 
fragment formation, and can obtain the fragment movement direction and 
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fragment velocity field distribution at different parts of the warhead axis by 
setting measurement points. Therefore, in order to determine the undetermined 
coefficients, AUTODYN finite element software is used to simulate the fragment 
formation process of the kill warhead to obtain fragment velocity data and 
fragment movement direction data at different axial positions of the warhead. 
Finally, these data are used to fit the corresponding equation.

A three-dimensional finite element model was established as shown in 
Figure 3, and simplified into two parts: the explosive and the cylindrical shell. 
Due to the symmetry of the cylindrical shell, only a 1/4 model was established. 
The shell material is 50SiMnVB steel, and the main mechanical parameters are 
from reference [20]. The four schemes of 8701, Comp-B, TNT, and CL-20-
based mixed explosives were used for the charge, and the property parameters 
are from reference [24, 25]. The detonation method is single-point detonation 
at the centre of one end of the casing. The Lagrange algorithm was used for 
the casing, the ALE algorithm was used for the charge, and the grid size was 
1 mm. The expansion process of the detonation products after the explosive’s 
detonation is described by the JWL state equation [25]. Johnson-Cook model is 
widely used to describe the mechanical response of metallic materials subjected 
to large strains, high strain rates, and high temperatures [26]. The state equation 
adopts linear form, and the Stochastic random failure model is used to simulate 
the formation of natural fragments.

Figure 3.	 Numerical simulation model and test point location

Table 1.	 Main parameters of shell material model

Material Tempering 
temperature [℃] A [MPa] B [MPa]

50SiMnVB
550 1047 262
n m C

0.028 0.63 0.018
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Table 2.	 C-J parameters of detonation products of explosives
Explosive ρ0 [g·cm‒3] D [km·s‒1] pCJ [GPa] e [kJ·cm‒3]

CL-20 1.94 9.06 39.3 10.02
Comp B 1.72 7.79 28.3 8.31

TNT 1.63 6.93 21.0 6.00
JH-2 1.70 8.43 30.4 10.20

Table 3.	 Parameters of JWL equation of state for explosive detonation 
products

Explosive A [GPa] B [GPa] R1 R2 ω
CL-20 875.0 30.00 4.73 1.39 0.26

Comp B 524.3 7.67 4.20 1.10 0.34
TNT 373.8 3.75 4.15 0.90 0.35
JH-2 852.4 18.02 4.60 1.30 0.38

 
(a)                                                          (b)

Figure 4.	 Scattering characteristics of fragments velocity (a) and scattering 
angle (b)

Display the data obtained by simulation in Figure 4. As shown in Figure 
4(a), the velocity of fragments formed by 50SiMnVB shells under the loading 
of four kinds of explosives has a similar trend along the axial direction, that is, 
the initial velocity of fragments formed is the smallest near the initiation point 
of explosives, and the maximum initial velocity of fragments appears at about 
63% of the cylinder length from the initiation point. The scattering angle of the 
fragments formed by the shell under the four kinds of explosives is basically 
the same, and the variation trend along the axial direction of the shell is also the 
same. This shows that the properties of explosives have no effect on the scattering 
angle of fragments. The previous theoretical analysis shows that the warhead 
geometry has a great influence on the fragment scattering angle.
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Fitting Equations 5 and 6 through simulation data. The velocity distribution 
of the fragment along the axial direction of the shell after considering the aspect 
ratio of the shell and the relative wall thickness of the shell is:
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The scattering angle of the fragments formed by the cylindrical warhead is:
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According to the geometric relationship in Figure 1:
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where r is the radius of the shell at x, r = y(x).
Combined Equations 19 and 20:
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Firstly, the basic parameters of warhead are used to calculate the fragmentation 
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coordinate (l, h) of the fragment hit point can be calculated. Finally, the motion 
direction angle φ of the fragment at 
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 was calculated by equation:

tan φ = l/h� (21a)
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3	 Study on Spatial Distribution of Fragment Mass

3.1	 Theoretical model
Assume that within the interval [θS, θS + dθS], the fragment mass is dM. The total 
mass of the fragments formed by the warhead is M0, then the mass probability 
density of the fragments to the space is:

0
2

( )tan tan ( ) cos 5.405
4 e

v dF xF x
D dx

γ θ φ = = ⋅ −  
          (19) 

 

( ) ( )
0 0

2 2 22 2
0 0

cos x x x x

x x y x x r
φ

− −
= =

− + − +
        (20) 

 

( )
0 0

2 2
0

( )tan tan ( ) 5.405
4 e

v x x dF xF x
D dxx x r

γ θ
 − = = ⋅ − ⋅
 − + 

       (21) 

 

γ(𝑥𝑥𝑥𝑥) = (𝑣𝑣𝑣𝑣𝑣^𝑦𝑦𝑦𝑦)  

 

� 𝑙𝑙𝑙𝑙1 = 𝑙𝑙𝑙𝑙 𝑙 𝑙𝑙𝑙𝑙
ℎ1 = ℎ − 𝑦𝑦𝑦𝑦,  

 

𝑅𝑅𝑅𝑅 = √𝑙𝑙𝑙𝑙2 − ℎ2  

 

tan𝜑𝜑𝜑𝜑 = 𝑙𝑙𝑙𝑙 𝑙⁄                 (21a) 

 

( )
0

M s
s

dM
M d

ρ θ
θ

=                  (22) 

 

( ) ( )( )1 1~ , ~M i i i im mρ θ θ + +              (23) 

 

s
0

( ,m)M
s

dM
M d dm

ρ θ
θ

=
⋅ ⋅

            (24) 

 

( )
( )20

22

0

1,
2

s

M s
s

dMdMm e
M d dm dm

θ θ

σρ θ
θ πσ

−
−

−= = ⋅
⋅ ⋅

       (25) 

 

( )
( )

( )

2
0
2

1
21, ln 2

2

exp ln 2

s

M s
M

M
M

mm e m

m mm

θ θ λ
σ

λ

ρ θ
πσ

λ

− −−  =  
 

   ⋅ −    

        (26) 

 

𝜆𝜆𝜆𝜆 =
2𝐷𝐷𝐷𝐷3 − 4
3 − 𝐷𝐷𝐷𝐷3

 

� (22)

where  is the total mass of fragments formed by the warhead.
According to Equation 22, the spatial mass density of the fragment between 

the scattering region is (θ1, θi+1) and the fragment mass (mi, mi+1) is:
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In view of the spatial distribution results of fragment mass, scholars [17] 
recovered fragments in each area of the spherical target when studying 105 mm 
HE warhead. It is found that the spatial distribution of fragment mass can also 
be expressed by a normal distribution, as shown in Figure 5.
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Figure 5.	 Spatial distribution results of fragment relative mass [17]

Therefore, this paper introduces the normal distribution form into the spatial 
distribution function of fragment mass. In combination with the fragment mass 
distribution model based on volume fractal dimension proposed by Zhu [11] and 
the normal distribution property of space angle, Equation 24 is:
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 is

average mass of fragments.
Equation 26 reflects that the fragment mass meets the normal distribution to 

the spatial angle. The closer the space angle θs is to the mathematical expectation 
of θ0, the greater the cumulative value of fragment mass. With different mass of 
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fragments, the spatial distribution is also different. The closer the spatial angle 
θs is to θ0, the greater the mass of fragments is. Mean square deviation σ can be 
considered as a function of fragment mass m: σ = σ(m). Large mass fragments are 
more concentrated, while small mass fragments are more dispersed. Combining 
with the theory proposed by predecessors [22], it can be believed that σ(m) 
decreases with the increase of fragment mass m.

According to the fragment mass distribution function adopted in this paper, 
it can be assumed that:
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where σ0 and kt are test constants, generally kt = 0.5. For small mass fragments 
(m tends to 0), σ = 1.5σ0, and for large mass fragments, σ = 0.5σ0.

The spatial distribution law of fragment mass can be obtained by solving 
the expected value of space angle , the mean mass of fragment  [23], the volume 
fractal dimension D3 [11] and the initial mean square error σ0.

3.2	 Solving the expected value and mean square error of space angle
The warhead is divided into several small units along the axial direction. 
According to Figure 1, in the centroid coordinate system, the initial position (xi, yi) 
of each fragment and the total mass M0i of the fragment are known. According 
to the corresponding equation in Section 2, the motion direction angle of the 
fragment at the radius R of the scattering region can be calculated as follows: 
φ(xi) = F(xi) and 
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. According to Equation 24:
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According to the definition of expected value and variance, we can obtain:
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Therefore:
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In consideration of engineering practicability and known total fragment mass 
M0i and distribution of fragment motion angle  in any area along the warhead 
axis, Equations 31 and 32 are approximated:
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According to 
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4	 Test Verification of the Spatial Distribution Model of 
Fragment Mass

4.1	 Test design
In this paper, the accuracy of the spatial distribution model of fragment mass 
is verified by the test data of fragment recovery based on the spherical target 
principle. As shown in Figure 6, the test arrangement followed the principle of 
spherical target test, but the target plates were replaced by boxes, and boxes 
were filled with wood chips as the decelerating medium. The open end of the 
box was covered with thin wooden boards, and boxes were arranged at a distance 
of 1 mm from the explosion center. A total of 18 boxes were arranged, and 
the angle of fragment recovery was 15°. The warhead faced the first box. The 
warhead is made of 45# steel in the test. The explosive is JH-14 with a density 
of 1.69 g·cm‒3 and the detonation velocity is 8.3 km/s. The Gurney velocity of 
the fragment is 2.68 km/s. After three tests, fragments were screened from each 
box and all test data were averaged.

Figure 6.	  Schematic diagram of the test

The recycling box with a height of h is used to recover the fragments at the 
center R = 1 away from the warhead. Suppose the polar Angle of the center of 
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where β is the angle between the upper and lower boundaries of the recycling 
box and the axis of the warhead, h is the height of the recycling box. R is the 
distance between the warhead and the recycling box.

Mass and quantity of fragments in any interval [θi, θi+1; mi, mi+1]:
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where MBox and NBox are respectively the mass and quantity of fragments recovered 
from the i-th box.

4.2	 Theoretical calculation of spatial distribution of fragment mass
The warhead is divided into 16 sections along the axial direction, each 5 mm 
long, and the last two sections are 3 and 7 mm (projectile bottom). According to 
Equations 18 and 21, the fragment velocity and fragment velocity direction angle 
at different coaxial positions of the warhead can be calculated. The theoretical 
results of fragment scattering characteristics are shown in Figure 7. It can be 
seen from Figure 7 that the shell wall thickness has a great influence on the 
fragmentation velocity distribution along the axial direction of the warhead. Due 
to the impact of the geometric structure of the warhead, the velocity direction 
angle of the fragments at both ends will be inclined to 90°. Therefore, these 
results are not reflected in Figure 7. With the center of mass of warhead as the 
starting point, the motion direction angle of the fragment when the fragment 
scattering space radius is 1 m can be obtained by Equation 17, and the results 
are shown in Figure 8.
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Figure 7.	 Theoretical results of scattering characteristics of fragments

Figure 8.	 Theoretical results of fragment motion direction angle

Removing the geometric influence of the bottom of the warhead, combining 
with the total number of fragments M0i and Equations 33 and 34 to form the 
fragment motion direction angle and its variance:
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 = 1.4921. By combining fragmentation spatial scattering

results θ0, σ0 and Equation 26, the fragmentation mass/quantity density spatial 
distribution rule of the warhead at 1m away from the center of mass can be 
obtained, as shown in Figure 10.

Figure 9.	 Related parameters of fragment mass distribution formed at different 
coaxial parts of warhead
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Figure 10.	 Spatial distribution law of fragment mass/quantity density

4.3	 Comparison and analysis of theoretical calculation results and 
test results

The average number of fragments recovered was 892. According to 
θ0 = 93.4324° and σ0 = 9.9512° calculated above and combined with 
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, the spatial distribution result of

Mott fragment number can be calculated. Because the previous theory assumes 
that the fragment mass formed by the warhead is the same in space, the 
corresponding fragment mass spatial distribution results can also be directly 
calculated. The theoretical calculation results of this paper are compared with 
those of predecessors and test results, as shown in Figure 11. When the space 
angle θS is between 90° and 100°, the error between the theoretical calculation 
of fragment mass distribution and the test results is 4.3%, and the error between 
the theoretical calculation of fragment quantity distribution and the test results 
is 19.4%. This indicates that fragment mass is more suitable to characterize the 
spatial distribution of fragments than fragment quantity. This is because the 
quantity of fragments formed by the warhead is too random, and the mass of 
fragments is certain. When the space angle θS is in the range of 80°~100°, the 
prediction accuracy of the spatial distribution model of fragment mass proposed 
in this paper is 18.2% higher than that of the other model. This is because 
when analyzing the spatial distribution of fragments in the past, the mass of 
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fragments was considered to be consistent, which was obviously inconsistent 
with the actual situation. Therefore, in the past, both the theoretical calculation 
results of the spatial distribution model of fragment quantity and the theoretical 
calculation results of the spatial distribution of fragment mass derived from the 
spatial distribution of fragment quantity have great errors compared with the test 
results. In this paper, the uneven mass distribution of the fragments in different 
spatial angles interval is considered, so the theoretical results in this paper are 
closer to the test results.

The theoretical model in this paper can well describe the spatial distribution 
of fragment mass in the space angle of 80°~100°, but there are large errors 
between the theoretical and test results in other space angle ranges. However, as 
84% of the total mass of the fragment is concentrated in the space angle range 
of 80°~100°, we can consider the theoretical model in this paper is reasonable.

On the whole, through the comparison and analysis of the theoretical results 
of this paper, previous theoretical results and test results, the rationality of the 
idea of using fragment mass to describe the spatial distribution of fragments 
proposed in this paper and the effectiveness of the fractal theory based natural 
fragment mass spatial distribution model established in this paper are illustrated. 
However, there are still some defects in the theoretical model. As the volume 
fractal dimension D3 needs to be determined by the test results, the theoretical 
model in this paper cannot play a predictive role at present. To solve this problem, 
the author’s team will conduct further research on volume fractal dimension D3 
in the future.

(a)
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(b)
Figure 11.	 Comparison of the theoretical and experimental results of the spatial 

distribution of fragment mass (a) and quantity (b)

5	 Conclusions

This paper mainly studies the relevant laws of natural fragmentation field 
formed by the killing warhead, including the spatial scattering characteristics of 
fragmentation and the spatial distribution law of fragmentation quantity/mass, 
and draws the following conclusions:
♦	 Based on the thought of stress gradient grade and velocity gradient grade in 

the process of explosion, the calculation formula of the fragment direction 
Angle formed at different axial positions of warhead was established based 
on the modified Gurney formula, which solved the problem that the Shapiro 
formula could not describe the fragment scattering at the end of warhead. The 
model established in this paper can more accurately describe the variation 
law of fragment scattering in fragment space with the center of mass of 
warhead as the origin.

♦	 Based on the fractal model of fragment mass distribution in the form of 
Weibull function, a two-dimensional joint probability density model of 
fragment space Angle and fragment mass was proposed, and the function 
form of fragment mass density exponential distribution was determined.

♦	 Based on the principle of spherical target test, fragment recovery test 
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is carried out, and the test results are compared and analyzed with the 
theoretical results of this paper and the previous theoretical results. The 
results show that when the space angle θS is between 90° and 100°, the 
error between the theoretical calculation and the experimental results of 
the fragment mass distribution is 4.3%, which is 15.1% higher than the 
accuracy of describing the spatial distribution of the fragment by the fragment 
quantity. It indicates that the spatial distribution of fragment mass is more 
suitable to characterize the spatial distribution of fragment than the spatial 
distribution of fragment quantity. The accuracy of the spatial distribution 
model of fragment mass proposed in this paper is 18.2% higher than that 
of previous theoretical models, can more accurately describe the spatial 
distribution of fragments.
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