PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Thinned fibre Bragg grating as a fuel adulteration sensor : simulation and experimental study

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents the implementation of a thinned fibre Bragg grating as a fuel adulteration sensor for volatile organic compounds. The proposed sensor can detect upto 10% adulteration of benzene, toluene and xylene: hydrocarbons precisely, whereas traditional methods can detect only upto 20% adulteration. The results obtained from the experiments are verified using Finite Difference Time Domain method. It is found that experimental results have very less deviation from simulation results. The proposed sensor provides us with the new possibility that may have commercial application, as well.
Słowa kluczowe
Rocznik
Strony
231--238
Opis fizyczny
Bibliogr. 45 poz., il., tab., wykr.
Twórcy
autor
  • Electronics and Communication Engineering Department, Motilal Nehru National Institute of Technology Allahabad, 211004, U.P., India
  • Electronics and Communication Engineering Department, Motilal Nehru National Institute of Technology Allahabad, 211004, U.P., India
autor
  • Electronics and Communication Engineering Department, S.V. National Institute of Technology, Surat, India
Bibliografia
  • 1. K.O. Hill, Y. Fujii, D.C. Johnson, and B.S. Kawasaki, “Photosensitivity in optical fibre waveguides: Application to reflection filter fabrication”, Appl. Phys. Lett. 32, 647-649 (1978).
  • 2. G. Meltz, W. Morey, and W. Glenn, “Formation of Bragg gratings in optical fibres by a transverse holographic method”, Opt. Lett. 14, 823-825 (1989).
  • 3. A. Mendez, “Fibre Bragg grating sensors: a market overview”, Proc. SPIE 6619, 661901 (2007).
  • 4. G. Ball, W. Morey, G. Hull-Alien, and C. Holton, “Low noise single frequency linear fibre laser”, Electron. Lett. 29, 1623-1625 (1993).
  • 5. P.J. Lemaire, R. Atkins, V. Mizrahi, and W. Reed, “High pressure H2 loading as a technique for achieving ultrahigh UV photosensitivity and thermal sensitivity in GeO2 doped optical fibres”, Electron. Lett. 29, 1191-1193 (1993).
  • 6. A. Simpson, K. Kalli, К. Zhou, L. Zhang, and I. Bennion, “Formation of type la fibre Bragg gratings in germanosilicate optical fibre”, Electron. Lett. 40, 163-164 (2004).
  • 7. B. Lee, S. Roh, and J. Park, “Current status of micro-and nano-structured optical fibre sensors”, Opt. Fiber Technol. 15, 209-221 (2009).
  • 8. S.J. Mihailov, “Fibre Bragg grating sensors for harsh environments”, Sensors 12, 1898-1918 (2012).
  • 9. S.R. Morikawa, C.S. Camerini, D.R. Pipa, J.M. Santos, G.P. Pires, A.M. Braga, R.W. Llerena, and A.S. Ribeiro, “Monitoring of flexible oil lines using FBG sensors”, Proc. SPIE 7004, 70 046F (2008).
  • 10. B. Onn, P. Arasu, Y. Al-Qazwini, A. Abas, N. Tamchek, and A. Noor, “Fibre Bragg grating sensor for detecting ageing transformer oil”, IEEE Proc. 3rd International Conference on Photonics, 110-113, Penang. Malesia, 2012.
  • 11. X. Ye, Y. Ni, and J.Yin, “Safety monitoring of railway tunnel construction using FBG sensing technology”, Adv. Struct. Eng. 16, 1401-1410 (2013).
  • 12. W. Xiong, C.S. Cai, and X. Kong, “Instrumentation design for bridge scour monitoring using fibre Bragg grating sensors”, Appl. Opt. 51, 547-557 (2012).
  • 13. J. Singh, A. Khare, and S. Kumar, “Design of Gaussian apodized fibre Bragg grating and its applications”, Int. J. Eng. Sci. Tech. 2, 1419-1424 (2010).
  • 14. S. Agarwal and V. Mishra, “Characterization of fibre Bragg grating for maximum reactivity based on modulation depth of refractive index”, Optik 125, 5192-5195 (2014).
  • 15. S.M.S.S. Kharazi, R.K.Z. Sahbudin, A.F. Abas, and S.B.A. Anas, “Fibre non-linear effects in multiple-wavelengths optical CDMA systems”, IETE Tech. Rev. 30, 149-156 (2013).
  • 16. A. Othonos, K. Kalli, D. Pureur, and A. Mugnier, Fibre Bragg gratings, in Wavelength Filters in Fibre Optics, 189-269, Springer, Berlin Heidelberg, 2006.
  • 17. G.P. Agrawal, Nonlinear Fibre Optics, Springer, New York 2000.
  • 18. K. Ismail, P.S. Menon, S. Shaari, H. A. Bakarman, N. Arsad, and A.A.A. Bakar, “Flat gain, wide bandwidth of in-line semiconductor optical amplifier in CWDM systems”, IETE Tech. Rev. 30, 149-156 (2013).
  • 19. G. Raj an, Optical Fibre Sensors: Advanced Techniques and Applications, CRC press 2015.
  • 20. Y. Yuan, L. Liang, and P. Xiong, “A novel high-sensitivity pressure sensor: Thinned fibre Bragg grating with pressure-sensing polymer”, Wuhan University Journal of Natural Sciences 16, 167-170 (2011).
  • 21. A. Iadicicco, A. Cusano, A. Cutolo, R. Bernini, and M. Giordano, “Thinned fibre Bragg gratings as high sensitivity refractive index sensor”, IEEE Photonic. Tech. L. 16, 1149-1151 (2004).
  • 22. R. Kashyap, Fibre Bragg Gratings, Elsevier 2nd edition, Academic Press, N.Y., 2009.
  • 23. A.K. Gupta and R. Sharma, “A new method for estimation of automobile fuel adulteration”, Adv. Air Pollut. 16, 357-370 (2010).
  • 24. V. Mishra, P.N. Patel, and V. Tiwari, “Nanoporous silicon microcavity based optical sensor to detect adulteration of petrol by organic solvents”, Opt. Quant. Electr. 47, 22992310 (2015).
  • 25. J.B. Maurya, Y.K. Prajapati, V. Singh, J.P. Saini and R. Tripathi, “Performance of Graphene-MoS2 based surface plasmon resonance sensor using silicon layer”, Opt. Quant. Electr. J. 47, DOI 10.1007/sl 1082-015-0233-z (2015).
  • 26. Y. Prajapati, A. Yadav, V. Singh and J.P. Saini, “Effect of metamaterial layer on optical surface plasmon resonance sensor”, Int. J. Light and Electron Optics, 124, 3607-3610 (2013).
  • 27. A. Upadhyay, Y.K. Prajapati, V. Singh and J.P. Saini, “Sensitivity estimation of metamaterial loaded planar waveguide”, Opt. Quant. Electr. J. 47, 2277-2287 (2015).
  • 28. A. Upadhyay, Y. K. Prajapati, V. Singh and J.P. Saini, “Comprehensive study of reverse index waveguide based sensor with metamaterial core”, Int. J. Opt. Commun. 348, 71-76 (2015).
  • 29. S. Kher, S. Chaubey, J. Kishore, and S. Oak, “Detection of fuel adulteration with high sensitivity using turnaround point long period fibre gratings in B/Ge doped fibres”, IEEE Sensors J. 13, 4482-4486 (2013).
  • 30. G. Mendes and P.J. Barbeira, “Detection and quantification of adulterants in gasoline using distillation curves and multivariate methods”, Fuel 112, 163-171 (2013).
  • 31. M.K.K. Figueiredo, R.P. Costa-Felix, L.E. Maggi, A.V. Alvarenga, and G.A. Romeiro, “Biofuel ethanol adulteration detection using an ultrasonic measurement method”, Fuel 91, 209-212 (2012).
  • 32. S. Goel, P.S. Venkateswaran, R. Prajesh, and A. Agarwal, “Rapid and automated measurement of biofuel blending using a microfluidic viscometer”, Fuel 139, 213-219 (2015).
  • 33. N. Garg, S. Mohan, A. Pal, and R.S. Mishra, “Fuel Adulteration, Problem and Mitigation Strategies: A Review”, Int. Conf. Advance Research and Innovation (ICARI-2015), 340-344 (2015).
  • 34. H.S. Cameiro, A.R. Medeiros, F.C. Oliveira, G.H. Aguiar, J.C. Rubim, and P. A. Suarez, “Determination of ethanol fuel adulteration by methanol using partial least-squares models based on Fourier transform techniques”, Energy and Fuels 22, 2767-2770 (2008).
  • 35. F.K. Coradin, G.R. Possetti, R.C. Kamikawachi, M. Muller, and J.L. Fabris, “Etched fibre Bragg gratings sensors for water-ethanol mixtures: A comparative study”, J. Microwaves, Optoelectronics and Electromagnetic Applications 9, 131-143 (2010).
  • 36. R.D.P. Corotti, J. Thaler, H.J. Kalinowski, M. Muller, J.L. Fabris, and R.C. Kamikawachi, “Etched FBG written in multimode fibres: sensing characteristics and applications in the liquid fuels sector”, J. Microwaves, Optoelectronics and Electro-magnetic Applications 14, 51-59 (2015).
  • 37. F. Leusch and M. Bartkow, “A short primer on benzene, toluene, ethylbenzene and xylenes (BTEX) in the environment and in hydraulic fracturing fluids”, Smart Water Res Centre 189, 1-8 (2010).
  • 38. A. Talapatraand A. Srivastava, “Ambient air non-methane volatile organic compound (nmvoc) study initiatives in India - A review”, Environ. Prot. Ecol. J. 2, 21 (2011).
  • 39. C.M. Filley, “Toluene abuse and white matter: a model of toxic leukoencephalopathy”, Psychiatric Clinics of North America 36, 293-302 (2013).
  • 40. H. Nourmoradi, M. Nikaeen, and M. Khiadani, “Removal of benzene, toluene, ethylbenzene and xylene (BTEX) from aqueous solutions by montmorillonite modified with nonionic surfactant: Equilibrium, kinetic and thermodynamic study”, Chem. Eng. J. 191, 341-348 (2012).
  • 41. Y.S. Jin, G.J. Kim, C.H. Shon, S.G. Jeon, and J.I. Kim, “Analysis of petroleum products and their mixtures by using terahertz time domain spectroscopy”, J. Korean Physical Society 53, 1879-1885 (2008).
  • 42. A.J. Cohen, H.R. Anderson, B. Ostro, K.D. Pandey, M. Krzyzanowski, N. Kunzli, K. Gutschmidt, C.A. Pope III, I. Romieu, and J.M. Samet, “Urban air pollution: Comparative quantification of health risks”, WHO, pp. 1353-1433, Ed.2, Geneva, 2004.
  • 43. A. Iadicicco, A. Cusano, S. Campopiano, A. Cutolo, and M. Giordano, “Thinned fibre Bragg gratings as refractive index sensors ”, IEEE Sensors J. 5, 1288-1295 (2005).
  • 44. J.F. Monllor, C. Neipp, A. Marquez Ruiz, A. Belendez, and I. Pascual, “Analysis of refrection gratings by means of a matrix method approach”, Pr. Electromagn. Res. 118, 167-183 (2011).
  • 45. http://www.physicsforums.com/showthread.php?t=l 65590.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-10dff5eb-aec0-4c5f-b684-dacc6c493d3d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.