PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Monitoring of displacements and deformations of the earth’s surface near the Stebnyk city using radar images of Sentinel-1

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This article applies radar interferometry technologies implemented in the ENVI SARscape and SNAP software environment provided by the processing of data from the Sentinel-1 satellite. The study was carried out based on six radar images of Sentinel-1A and Sentinel -1B taken from September 2017 until February 2018 with an interval of one month and on the radar-module of the already mentioned SNAP software. The main input data for solving the considered problem are radar images received from the satellite Sentinel-1B on the territory of Stebnyk-Truskavets for six months with an interval of one month. Monitoring of the Earth’s surface using radar data of the Sentinel-1A with a synthesized aperture is implemented with the application of interferometric methods of Persistent Scatterers and Small baselines interferometry for estimating small displacements of the Earth’s surface and structures. The obtained quantitative and qualitative indicators of monitoring do not answer the processes that take place and lead to vertical displacements the six months but do provide an opportunity to assess the extent and trends of their development. The specification in each case can be accomplished by ground methods, which greatly simplify the search for sites with critical parameters of vertical displacements which can have negative consequences and lead to an emergency.
Rocznik
Strony
85--96
Opis fizyczny
Bibliogr. 27 poz., rys., tab.
Twórcy
autor
  • Lviv Polytechnic National University, Department of Geodesy, 12 S. Bandery St. Lviv, Ukraine 79013
  • Lviv Polytechnic National University, Department of Photogrammetry and Geoinformatics, 12 S. Bandery St. Lviv, Ukraine, 79013
autor
  • Lviv Polytechnic National University, Department of Photogrammetry and Geoinformatics, 12 S. Bandery St. Lviv, Ukraine, 79013
  • Lviv Polytechnic National University, Department of Cadastre of Territiry, 12 S. Bandery St. Lviv, Ukraine, 79013
Bibliografia
  • [1] Ajadi, O., Meyer, F. and Webley, P. (2016). Change detection in synthetic aperture radar images using a multiscale-driven approach. Remote Sensing, 8(6), 482. DOI: https://doi.org/10.3390/rs8060482.
  • [2] Berardino, P., Fornaro, G., Lanari, R. and Sansosti, E. (2002). A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms. IEEE Transactions on geoscience and remote sensing, 40(11), 2375–2383. DOI: 10.1109/TGRS.2002.803792.
  • [3] Belcher, D.P. (2008). Theoretical limits on SAR imposed by the ionosphere. IET Radar, Sonar & Navigation, 2(6), 435–448.
  • [4] Chen, M., Tomás, R., Li, Z., Motagh, M., Li, T., Hu, L. and Gong, X. (2016). Imaging land subsidence induced by groundwater extraction in Beijing (China) using satellite radar interferometry. Remote Sensing, 8(6), 468. DOI: 10.3390/rs8060468.
  • [5] Colesanti, C., Ferretti, A., Novali, F., Prati, C. and Rocca, F. (2003). SAR monitoring of progressive and seasonal ground deformation using the permanent scatterers technique. IEEE Transactions on Geoscience and Remote Sensing, 41(7), 1685–1701. DOI: 10.1109/TGRS.2003.813278.
  • [6] Feranec, J., Hazeu, G., Christensen, S. and Jaffrain, G. (2007). Corine land cover change detection in Europe (case studies of the Netherlands and Slovakia). Land use policy 24(1), 234–247.
  • [7] Ferretti, A., Prati, C., and Rocca, F. (1999). Permanent scatterers in SAR interferometry. IEEE Transactions on Geoscience and Remote Sensing, 39(1), 8–20. DOI: 10.1109/36.898661.
  • [8] Ferretti, A., Prati C. and Rocca F. (2001). Permanent scatterers in SAR interferometry. IEEE Transactions on Geoscience and Remote Sensing, 39(1), 8–20. DOI: 10.1109/36.898661.
  • [9] Ferretti, A., Prati, C. and Rocca, F. (2000). Nonlinear subsidence rate estimation using permanent scatterers in differential SAR interferometry. IEEE Transactions on Geoscience and Remote Sensing, 38(5), 2202–2212. DOI: 10.1109/36.868878.
  • [10] Floyd, A.L., Prakash, A., Meyer, F.J., Gens, R. and Liljedahl, A. (2014). Using synthetic aperture radar to define spring breakup on the Kuparuk river, Northern Alaska. Arctic, 67(4), 462–471. DOI: 10.14430/arctic4426.
  • [11] Fritz, T., Rossi, C., Yague-Martinez, N., Rodriguez-Gonzalez, F., Lachaise, M. and Breit, H. (2011). Interferometric processing of TanDEM-X data. In 2011 IEEE International Geoscience and Remote Sensing Symposium, 2011 (pp. 2428–2431). Vancouver, Canada: IEEE.
  • [12] Garestier, F., Dubois-Fernandez, P. C. and Champion, I. (2008). Forest height inversion using high resolution P-band Pol-InSAR data. IEEE Transactions on Geoscience and Remote Sensing, 46(11), 3544–3559. DOI: 10.1109/TGRS.2008.922032.
  • [13] Garthwaite, M.C., Nancarrow, S., Hislop, A., Thankappan, M., Dawson, J.H. and Lawrie, S. (2015). The Design of Radar Corner Reflectors for the Australian Geophysical Observing System: A single design suitable for InSAR deformation monitoring and SAR calibration at multiple microwave frequency bands. Canberra, Australia: Geoscience Australia.
  • [14] Haghshenas Haghighi, M. and Motagh, M. (2016). Assessment of ground surface displacement in Taihape landslide, New Zealand, with C-and X-band SAR interferometry. New Zealand Journal of Geology and Geophysics, 59(1), 136–146. DOI: 10.1080/00288306.2015.1127824.
  • [15] Hooper, A., Zebker, H., Segall, P. and Kampes, B. (2004). A new method for measuring deformation on volcanoes and other natural terrains using InSAR persistent scatterers. Geophysical Research Letters, 31(23), 1–5. DOI: 10.1029/2004GL021737.
  • [16] Krieger, G., Hajnsek, I., Papathanassiou, K.P., Younis, M. and Moreira, A. (2010). Interferometric synthetic aperture radar (SAR) missions employing formation flying. Proceedings of the IEEE, 98(5), 816–843. DOI: 10.1109/JPROC.2009.2038948.
  • [17] Lanari, R., Mora, O., Manunta, M., Mallorquí, J.J., Berardino, P. and Sansosti, E. (2004). A small-baseline approach for investigating deformations on full-resolution differential SAR interierograms. IEEE Transactions on Geoscience and Remote Sensing, 42(7), 1377–1386. DOI: 10.1109/TGRS.2004.828196.
  • [18] Lachaise, M., Balss, U., Fritz, T. and Breit, H. (2012, July). The dual-baseline interferometric processing chain for the TanDEM-X mission. In IEEE International Geoscience and Remote Sensing Symposium, 2012 (pp. 5562–5565). Munich, Germany: IEEE.
  • [19] Lee, S.K., Kugler, F., Hajnsek, I. and Papathanassiou, K.P. (2009, January). The impact of temporal decorrelation over forest terrain in polarimetric SAR interferometry. Proceedings of the Fourth International Workshop on Science and Applications of SAR Polarimetry and Polarimetric Interferometry PoIInSAR 2009. ISBN:978-92-9221-232-2. Noordwijk, Netherlands: European Space Agency.
  • [20] Livingstone, C.E., Sikaneta, I., Gierull, C.H., Chiu, S., Beaudoin, A., Campbell, J. and Knight, T.A. (2002). An airborne synthetic aperture radar (SAR) experiment to support RADARSAT-2 ground moving target indication (GMTI). Canadian Journal of Remote Sensing, 28(6), 794–813. DOI: 10.5589/m02-074.
  • [21] Meyer, F.J., McAlpin, D.B., Gong, W., Ajadi, O., Arko, S., Webley, P.W. and Dehn, J. (2015). Integrating SAR and derived products into operational volcano monitoring and decision support systems. ISPRS Journal of Photogrammetry and Remote Sensing, 100, 106–117.
  • [22] Mora, O., Mallorqui, J.J. and Broquetas, A. (2003). Linear and nonlinear terrain deformation maps from a reduced set of interferometric SAR images. IEEE Transactions on Geoscience and Remote Sensing, 41(10), 2243–2253. DOI: 10.1109/TGRS.2003.814657.
  • [23] Papathanassiou, K.P. and Cloude, S.R. (2001). Single-baseline polarimetric SAR interferometry. IEEE Transactions on Geoscience and Remote Sensing, 39(11), 2352–2363. DOI: 10.1109/36.964971.
  • [24] Petrov, S.L. (2019). Monitoring of vertical displacements of technogenically loaded territories by geodetic methods. Author’s abstract of candidate’s thesis. Lviv. 26 p. (Ukrainian).
  • [25] Rosen, P.A., Hensley, S., Joughin, I.R., Li, F.K., Madsen, S.N., Rodriguez, E. and Goldstein, R.M. (2000). Synthetic aperture radar interferometry. Proceedings of the IEEE, 88(3), 333–382.
  • [26] Treuhaft, R.N. and Siqueira, P.R. (2000). Vertical structure of vegetated land surfaces from interferometric and polarimetric radar. Radio Science, 35(1), 141–177.
  • [27] Zandona-Schneider, R., Papathanassiou, K.P., Hajnsek, I. and Moreira, A. (2006). Polarimetric and interferometric characterization of coherent scatterers in urban areas. IEEE Transactions on Geoscience and Remote Sensing, 44(4), 971–984. DOI: 10.1109/TGRS.2005.860950.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-10df90de-11ea-48d1-993c-dd4e405cb6c3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.