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Abstract

The article presents our research on applications of fuzzy logic to reduce air pollution
by DeNOx filters. The research aim is to manage data on Selective Catalytic Reduction
(SCR) process responsible for reducing the emission of nitrogen oxide (NO) and nitro-
gen dioxide (NO2). Dedicated traditional Fuzzy Logic Systems (FLS) and Type-2 Fuzzy
Logic Systems (T2FLS) are proposed with the use of new methods for learning fuzzy rules
and with new types of fuzzy implications (the so-called ”engineering implications”). The
obtained results are consistent with the results provided by experts. The main advantage
of this paper is that type-2 fuzzy logic systems with ”engineering implications” and new
methods of learning fuzzy rules give results closer to expert expectations than those based
on traditional fuzzy logic systems. According to the literature review, no T2FLS were
applied to manage DeNOx filter prior to the research presented here.
Keywords: Selective Catalytic Reduction (SCR), fuzzy management of DeNOx filter,
fuzzy logic systems, ”engineering” fuzzy implications, learning fuzzy rules.

1 Introduction

Attempts to create systems working similarly
to (or even replacing) human-being in different ac-
tivities are very common nowadays. Many ap-
proximations of human-being actions by machines
and/or software can be found in different fields and
realized using various methods. Expert systems
are used for engineering tasks [1], in high volt-
age diagnostic systems [2] or as classification sys-
tems [3]. Fuzzy Logic Systems (FLS) are used as
components of experts systems when expert knowl-
edge cannot be expressed unambiguously, or is too
difficult or too complex to be described in tradi-
tional and/or mathematical manners (e.g. quanti-

tative terms). Examples for progress of fuzzy logic
systems and type-2 fuzzy logic systems are given
in numerous publications, e.g. [4, 5, 6, 7]. Quoted
methods aim is to give models of uncertain data for
systems that are supposed to give results as close to
those given by a human-being as possible. Systems
using fuzzy logic are very popular, mostly because
data necessary for operations can be obtained from
experts using natural language. This allows a much
easier way to determine input data and does not re-
quire knowledge on fuzzy logic or information sys-
tems from experts in a field. Fuzzy logic systems
are successfully used in many solutions, showing
greater effectiveness than traditional (linear) mod-
els. Various examples describe the use of FLSs in
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nuclear power plants [8], crane control [9], eleva-
tor control [10], train control [11], or water quality
control [12, 13], and many others.

The rest of the paper is organized as follows:
Section 2 describes the specificity of the Selec-
tive Catalytic Reduction process and uncertainty of
knowledge appearing in managing it. This descrip-
tion is based on our previous publications [14, 15,
16, 17], however, we provided it again to make the
report on the newest results complete and to give
the background for comparative analysis. Similarly,
in Section 3, we comment on basics of designing
traditional fuzzy logic systems to manage the SCR
process and on their previously introduced modifi-
cations like using the so-called engineering implica-
tions [15] or learning rules algorithms [17]. In Sec-
tion 4, Type-2 Fuzzy Logic Systems are designed
and tested in managing the SCR process. Anal-
ogously to traditional FLSs in Section 3, also the
presented T2FLSs are improved via using extended
implications in the inference block, Section 4.2, and
the fuzzy rules are being learned with newly pro-
posed iterative algorithms, Section 4.3. The results
showing better performance of Type-2 Fuzzy Logic
Systems are collected and commented in Section 5
and the paper is concluded in Section 6.

2 Knowledge specification and
data uncertainty in Selective Cat-
alytic Reduction

One of the most efficient methods for reducing
nitrogen oxides (NO, NO2) in gases exhausted as
by-products of combustion, is Selective Catalytic
Reduction (SCR) [18]. The ammonia gas NH3 is
a reductor and injected to the reduction chamber,
see Figure 1. The chemical model of this process is
given by (1), (2)

4NO+4NH3+O2=4N2+6H2O, (1)

6NO2+8NH3=7N2+12H2O. (2)

The DeNOx filter performs the catalytic reduction
and its main task is to reduce nitrogen oxides in
chemical processes in which these oxides are harm-
ful by-products. As for now, managing the param-
eters of this process must take place under human
control due to the non-linearity of the process and
many factors that affect the efficiency of the chem-
ical reaction, so parameters of the DeNOx filter are

controlled by human-being (of course, in large in-
dustrial installations). The main goal of this paper
is to propose fuzzy logic systems and type-2 fuzzy
logic systems to support (or even replace) experts
managing the DeNOx filter, see Figure 2. There-
fore, the attempt to develop fuzzy logic systems ex-
tended with new implications and new methods of
learning fuzzy rules is supposed to increase the effi-
ciency and reduce human expert effort, as solutions
based on linear models do not give satisfactory re-
sults, especially, the results are not similar enough
to human actions.

Figure 1. A schema of Selective Catalytic
Reduction (SCR) performed by the DeNOx filter.

Figure 2. Selective catalytic reduction (SCR) –
determining the settings of abrasion of the

ammonia (NH3) dosing valve into the reaction
chamber

The knowledge necessary to design fuzzy logic
systems is obtained from experts being process en-
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gineers and specifying settings, in particular the de-
gree of opening of the ammonia dispensing valve
to the reaction chamber of the filter. As for now,
they are the only sources of knowledge on that, for
several reasons:

1. The SCR process depends not only on the con-
centration of NO and NO2, but also on:

(a) Working temperature of the system,

(b) Atmospheric conditions (affecting emission
and SCR process),

(c) The type of platinum mesh used as a catalyst,

(d) The age of the platinum mesh (its thickness
proportional to its use) used as a catalyst.

2. No measurements or difficult measurements of
properties that affect the process, e.g. type and
thickness of the catalytic mesh, the working
temperature of the process [18].

3. Expert knowledge used to manage the SCR pro-
cess is difficult or impossible to express with tra-
ditional sets or parameters and their dependen-
cies; the specificity of the process of selecting
parameters in SCR allows, in practice, for lin-
guistic descriptions only. The intuition and ex-
perience of an expert, playing important role in
the process, is also difficult to be structured.

4. Logistic and/or economic conditions external to
the SCR process, allowing, for example, peri-
odic increase of concentration of nitrogen oxides
released to the atmosphere at the price of pur-
chasing additional gas emission permit, financial
policy, changes in law on emission, etc.

The above-mentioned facts seem to be sufficient
arguments to choose fuzzy logic system and type-2
fuzzy logic systems as tools to manage parameters
of the SCR process in the DeNOx filter.

3 Managing the SCR process with
fuzzy logic systems

This paper is focused on managing data used
in the Selective Catalytic Reduction process using
type-2 fuzzy logic systems (see Sections 4 and 5).
We intend to is to show that a better solution to the
problem can be proposed if T2FLS (based on type-2

fuzzy sets) are developed from the former (type-1)
fuzzy logic systems, to control DeNOx filters better
and more efficiently [14, 15, 16, 17].

Hence, at first, this Section resumes briefly our
former works, in which traditional (Type-1) FLSs
have been constructed to solve the problem. The
research began with implementing of known archi-
tectures of fuzzy logic systems [19, 20, 21], to sim-
ulate the dispensing ammonia to the DeNOx reac-
tion chamber. The results of this work are published
in [14, 15, 16, 17]. Here, we recall them briefly to
provide the reader with the background for analysis
presented in Section 5.

3.1 Engineering implications in FLSs

By engineering implications we understand
fuzzy implication-like operators that not necessar-
ily complete all the axioms proposed for traditional
fuzzy implications, see Table 2 and [22, 23, 24],
however, they are intuitive and can be successfully
applied as implication operators in fuzzy logic sys-
tems. Our previous results described in [15] point
out that efficiency of designed systems may raise if
using properly designed engineering implications,
so we claim (and finally prove) that the supposed re-
sult — to calculate parameters as close to those pro-
posed by human experts as possible — is achieved
in type-2 fuzzy logic systems. The proposed impli-
cations are given by formulae (3) and (4). They are
the so-called ”engineering” implications, meaning
that they work properly in fuzzy logic systems but
they do not need to complete the axioms given for
fuzzy implications to consider them as generaliza-
tions of the classic implication (see Tables 1, 2).

IK1(x,y) =
√

xy
x+ y− xy

,x,y ∈ (0,1], (3)

IK2(x,y) =
xy

x+ y
, for x ̸= 0∨ y ̸= 0,x,y ∈ [0,1]. (4)

Table 1. Completing T -norm axioms by the
proposed engineering fuzzy implications (3), (4).

Axiom of T -norms IK1 IK2

1 commutativity YES YES
2 associativity NO NO
3 monotonicity YES YES
4 neutral element NO NO
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Table 2. Completing fuzzy implication axioms by
engineering fuzzy implications (3), (4).

Axiom of fuzzy implications IK1 IK2

1 a ≤ c → I(a,b)≥ I(c,b) NO NO
2 b ≤ c → I(a,b)≤ I(a,c) NO YES
3 I(0,a) = 1 YES YES
4 I(a,1) = 1 NO NO
5 I(1,0) = 0 YES YES

Figures 3 and 4 show graphic representations of en-
gineering implications (3), (4).

Figure 3. A result of implication IK1 (c) for sample
fuzzy sets A,B with triangular membership functions

(a), (b)

Figure 4. A result of implication IK2 (c) for sample
fuzzy sets A,B with triangular membership functions

(a), (b)

3.2 Learning fuzzy rules in FLSs

The rule base is an essential component of each
fuzzy system. Fuzzy rules are implications in terms
of fuzzy logic: IF antecendent THEN succedent.
Usually, rules express expert knowledge, dependen-
cies, facts and/or observations that are too complex
or too difficult to be expressed in traditional quanti-

tative terms. However, it may happen that an expert
is not able to propose the optimal set of rules for
a given system, and, frequently, the rule base must
be processed (e.g. reduced, learned or rebuilt). In
this experiment, novel algorithms for learning fuzzy
rules are proposed and applied, since those based
on known literature methods, e.g. [25, 26], did not
provide satisfying results. As the designed fuzzy
systems collect data every 2s, additional conditions
on computational complexity and time for the pro-
posed learning rules algorithms must be assumed.
As a result of the research, three new learning fuzzy
rules (LFR) algorithms are proposed, working as
follows: two inputs, x1 ∈ X1,x2 ∈ X2, and one out-
put y ∈ Y for each rule are considered as elements
of fuzzy sets in X1,X2, Y , respectively. Using all
input fuzzy sets, nFy IF-THEN rules are generated,
where n = ∏k

i=1 Fi, k is the number of input uni-
verses of discourse X1,X2, . . . , Fi is the number of
fuzzy sets in a given Xi, and Fy is the number fuzzy
sets in Y . Each rule has one succedent j, where
j = 1,2, . . . ,Fy. The training data is represented by
three sets of elements, x1,x2 and y. Learning fuzzy
rules is based on the following steps:

1. All possible combinations of fuzzy rules from
fuzzy sets of input and output data are created.

2. Input data is fuzzified and inference is per-
formed.

3. Membership degree to each of the output fuzzy
sets is evaluated.

4. The counter of each rule (of each succedent) is
increased depending on satisfying certain condi-
tions in a given algorithm:

– Algorithm 1 increments succCount only for
the rule with the largest membership degree
of succedent.

– Algorithm 2 increments the succCount for
each rule with a non-zero membership degree
of succedent.

– In Algorithm 3, for each rule with a non-zero
membership degree of succedent, the succ-
Count is increased with this membership de-
gree.

5. For a given antecedent the rule with the
largest counter is selected.
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Algorithm 1 Learning fuzzy rules I (LFRI)
1: for all succedents do
2: if membership degree is the largest then
3: succCount ← succCount+1
4: end if
5: end for

Algorithm 2 Learning fuzzy rules II (LFRII)
1: for all succedents do
2: if membership degree > 0 then
3: succCount ← succCount+1
4: end if
5: end for

Algorithm 3 Learning fuzzy rules III (LFRIII)
1: for all succedents do
2: if membership degree > 0 then
3: succCount ← succCount +

membership degree
4: end if
5: end for

Example.
The rule in its basic form, i.e. before learning:
IF (NO IS Low) AND (NO2 IS Higher Than Ac-
ceptable) THEN Valve opening angle IS High
Rules after learning Algorithm 1, before choosing
the best rule:
IF (NO IS Low) AND (NO2 IS Higher Than Ac-
ceptable) THEN Valve opening angle IS Low -
succCount = 0
IF (NO IS Low) AND (NO2 IS Higher Than Ac-
ceptable) THEN Valve opening angle IS Medium -
succCount = 0
IF (NO IS Low) AND (NO2 IS Higher Than Ac-
ceptable) THEN Valve opening angle IS High -
succCount = 56
IF (NO IS Low) AND (NO2 IS Higher Than Ac-
ceptable) THEN Valve opening angle IS Very High
- succCount = 96
Hence, the best rule, chosen via succCount=96, is:
IF (NO IS Low) AND (NO2 IS Higher Than Ac-
ceptable) THEN Valve opening angle IS Very
High

The results obtained by the designed FLSs are pre-
sented in Table 4 and discussed in Section 5.

4 Type-2 fuzzy logic systems man-
aging data in the SCR process

Promising results in managing parameters of
the SCR process obtained in our previous experi-
ments, cf. [15] and Section 3, based mostly on tra-
ditional and on interval-valued fuzzy sets (aka in-
terval type-2 fuzzy sets), are the main premise to
consider general type-2 fuzzy sets and type-2 fuzzy
logic systems to be applied. This idea is mainly
inspired by many successful applications of type-2
fuzzy logic systems [27, 28, 29, 30, 31, 32] sup-
ported via pioneer descriptions and explanations of
building T2FLSs by Mendel et al. [22, 33, 34, 35,
36]. Our first attempt to apply higher order fuzzy
logic systems in managing the SCR process is pre-
sented in [15], however from the current point of
view, it was limited to interval type-2 fuzzy set
only; here, we present T2FLSs based on general
(mostly triangular type-2 fuzzy sets) and the results
achieved are promising.

A general type-2 fuzzy set Ã in X is defined
as a set of pairs: Ã = {⟨x,µÃ(x)⟩ : x ∈ X where
µÃ(x) : X → F S([0,1]) is a membership function
of a type-2 fuzzy set and F S([0,1]) is a set of all
fuzzy sets in [0,1]. Type-2 fuzzy sets express mem-
bership degrees as fuzzy sets in [0,1] so primary and
secondary membership functions are distinguished.
Especially, in secondary membership functions and
secondary membership degrees, we see an oppor-
tunity to represent imprecise knowledge (given by
experts) more adequately than in case of traditional
fuzzy sets. In particular, we intend to represent
levels of expertise of experts, the so-called ”confi-
dence levels”, with secondary membership degrees
to type-2 fuzzy sets on input and output of designed
systems, see Figure 5 and 6.

Figure 5. The general schema of a type-2 fuzzy
logic system
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4.1 Representing expert knowledge in
type-2 fuzzy logic system

Usually, knowledge acquired from an expert
may contain errors, subjectivity, or another draw-
backs affecting performance of projected systems.
Because of that, frequently, knowledge and initial
data for a system are collected from more than one
expert, to eliminate subjective assessments, differ-
ent experiences, etc. Obviously, representing these
data, usually different from different experts, is a
crucial point in designing systems. Moreover, ag-
gregating data may and should take into account
different levels of expertise of experts providing
their knowledge.

Figure 6. Constructing type-2 fuzzy sets based on
knowledge of a few experts

Type-2 fuzzy logic systems, unlike traditional
FLSs (in which information from many sources
must be averaged before applying, e.g. in a rule
base), make it possible to represent and/or aggre-
gate experts proposals without loss of important
(though seeming secondary) information that may
positively affect final results (system outputs). Usu-
ally, in type-2 fuzzy logic systems, aggregating data
from different experts is done with primary and sec-
ondary membership degrees taken into account, e.g.
as values and their weights. A symbolic schema
of such an aggregation is given in Figure 6. Sec-
ondary membership functions of type-2 fuzzy sets
on inputs and outputs make it possible to express
confidence levels of experts, or, to be more precise,
”level of confidence to expert knowledge” with real
numbers in [0,1]. In practice, it is made by tak-
ing into account the linguistic values proposed by
experts as separate primary membership functions
and assigning to each of them secondary member-

ship degrees. For the systems designed in this ex-
periment, the level of confidence is related to his/her
seniority/experience. We use the following weights
to describe experts’ seniority: Expert 1: w1 = 3, Ex-
pert 2: w2 = 20, Expert 3: w3 = 13, related to years
they work for the company. Primary and secondary
membership functions are assumed to be triangular.
The expert knowledge on the SCR process is rep-
resented in terms of fuzzy sets and aggregated as
follows:

1. Experts propose membership functions for the
imprecise values considered in the system, i.e.
for concentration of NO, NO2. The labels are:
(a) Low, (b) Medium, (c) High, (d) Higher than
acceptable.

2. The proposals for each label are taken as pri-
mary membership functions of a type-2 fuzzy
set representing that label and their membership
degrees – as primary membership degrees.

3. Vertex of triangular membership functions for
the resulting type-2 fuzzy set is evaluated (5)

x =
∑n

i=1 xiwi

∑n
i=1 wi

, (5)

where x is the coordinate of the vertex of pri-
mary membership function after aggregation, xi

is the coordinate of the top of the fuzzy set of the
i-th expert, and wi is the weight assigned to the
i-th expert.

4. Secondary membership degrees of a resulting
type-2 fuzzy set are evaluated as normalized ex-
perts’ weights: w1 = 0.15, w2 = 1.0, w3 = 0.65

Analogously to aggregating input data from experts,
the output data must also be aggregated. In this
case, for each sample of entry data on concentration
of nitrogen oxides, the proper opening of ammonia
dosing valve is proposed by each of experts. Next,
the data are aggregated via (6)

y =
∑n

i=1 yiwi

∑n
i=1 wi

, (6)

where y ∈ [0,100]%, and wi is the weight assigned
to the i-th expert. Sample values of input and output
and corresponding results of aggregation via (6) are
collected in Table 3.
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Table 3. Sample values of concentration of NO, NO2 (col. 1., 2.), the ammonia valve opening given by
experts (col. 3.-5.) and aggregated via (6) (col. 6.)

Concentrat- Concentrat- Expert 1 Expert 2 Expert 3 Aggregated data
ion NO ion NO2 [% opening [% opening [% opening [% opening
[mg/m3] [mg/m3] valve NH3] valve NH3] valve NH3] valve NH3]

57 128 30 33 32 32
35 86 27 30 31 30
287 13 52 57 56 56
176 110 49 55 55 55
398 80 100 100 100 100
62 250 93 59 57 61

4.2 Engineering type-2 fuzzy implications

In Section 3.1, the so-called engineereing appli-
cations are propsed for traditional FLSs. Now, we
enhance them to be useful implication operators for
inference using type-2 fuzzy rules. Let Ã, B̃ – type-2
fuzzy sets in X ,Y , respectively

µÃ(x) =
∫

u∈Jx

fx(u)
u

, µB̃(y) =
∫

v∈Jy

gy(v)
v

, (7)

where Jx,Jy ⊆ (0,1] are sets of all primary member-
ship degrees to Ã, B̃, respectively. The general form
of a type-2 fuzzy implication is

µÃ→B̃(x,y) =
∫

u∈Jx

∫

v∈Jy

I1( fx(u),gy(v))
I2(u,v)

, (8)

where I1, I2 are fuzzy implications, e.g. min. Us-
ing engineering fuzzy implications (3) or (4) for I2
and min for I1, we obtain the following engineering
type-2 fuzzy implications

ĨK1 : µÃ→B̃(x,y) =
∫

u∈Jx

∫

v∈Jy

min{ fx(u),gy(v)}( √
uv

u+v−uv

) , (9)

ĨK2 : µÃ→B̃(x,y) =
∫

u∈Jx

∫

v∈Jy

min{ fx(u),gy(v)}(
uv

u+v

) . (10)

Figure 7. A result of type-2 fuzzy implication ĨK1 (c)
for sample type-2 fuzzy sets Ã, B̃ with triangular lower

and upper membership functions (a), (b)

Figure 8. A result of type-2 fuzzy implication ĨK2 (c)
for sample type-2 fuzzy sets Ã, B̃ with triangular lower

and upper membership functions (a), (b)

The proposed engineering implications are used in
the inference block of the designed type-2 fuzzy
logic system, the schema is illustrated in Figure 5.
Figures 7 and 8 illustrate sample type-2 fuzzy sets
as inputs and outputs of implications (9) and (10),
respectively.
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4.3 Algorithms for learning type-2 fuzzy
rules

Fuzzy rules for Type-2 Fuzzy Logic Systems
are usually determined on the base of expert knowl-
edge and their experience. This does not guaran-
tee optimal solutions, and this is the main reason
for enhancing the proposed system with learning
fuzzy rules algorithms newly designed here with re-
spect to T2FLS requirements: learning type-2 fuzzy
rules algorithms, LT2FR. Besides, they extend Al-
gorithms 1.-3 shown for traditional FLSs in Sec-
tion 3.2.

The results obtained with type-2 fuzzy logic
systems with learning rules algorithms 4.-6. are
presented in Table 5 and commented in Section 5.2.

Algorithm 4 Learning type-2 fuzzy rules I
(LT 2FRI)

1: for all succedents do
2: if defuzzified primary membership degree

is the largest then
3: succCount ← succCount+1
4: end if
5: end for

Algorithm 5 Learning type-2 fuzzy rules II
(LT 2FRII)

1: for all succedents do
2: if defuzzified primary membership degree

> 0 then
3: succCount ← succCount+1
4: end if
5: end for

Algorithm 6 Learning type-2 fuzzy rules III
(LT 2FRIII)

1: for all succedents do
2: if defuzzified primary membership degree

> 0 then
3: succCount ← succCount +

defuzzified primary membership degree
4: end if
5: end for

4.4 Type-reduction and defuzzification

The type-reduction is the process of represent-
ing a type-2 fuzzy set by an adequate type-1 fuzzy

set. In this research, we use the Centroid Method:
via the Extension Principle, the centroid of a type-
2 fuzzy set B̃ in a finite Y ={y1,y2, . . . ,yM}, M ∈
M, µB̃(yi) =

∫
u∈Jyi

fyi(u)/u where Jyi ⊆ [0,1], i =
1,2, . . . ,M, is a set of all primary membership of yi

to B̃, is given as

C(B̃) =
∫

u1∈Jy1

. . .
∫

uM∈JyM

fy1(u1)∗ . . .∗ fyM(uM)(
∑M

i=1 yiui

∑M
i=1 ui

) ,

(11)
where ui ∈ Jyi , and ∗ is a T -norm.

Figure 9. Graphical demonstration of the height
method for defuzzification; µi is an activation value

of a given fuzzy rule, and yi’s are representative
values for each of fuzzy sets in output.

The defuzzification for all simulations is done
using the Height Method (12), that uses heights of
each input fuzzy sets that create output fuzzy sets
as antecedents of fuzzy rules (after type-reduction).
The heights of fuzzy sets are µCi∗ (taken as weights)
and yi are representative points, see [37].

y∗ =
∑M

i=1 yiµCi∗

∑M
i=1 µCi∗

, (12)

where y∗ is the value of the fuzzy output, µCi∗ is the
value of the activation of i-th fuzzy rule, yi is the el-
ement of Y representative for i-th output fuzzy set
and M is the number off all fuzzy sets affecting the
output, compare Figure 9.

5 Comparative study and discus-
sion

The elaborated fuzzy logic systems and type-2
fuzzy logic systems are now tested via the simula-
tion analysis and comparison. Each system produce
sets of output values and these sets are compared to
expert opinions. The general criterion is: the more
similar proposals computed by a system to expert
knowledge, the better the system.
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fuzzy logic systems are now tested via the simula-
tion analysis and comparison. Each system produce
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expert opinions. The general criterion is: the more
similar proposals computed by a system to expert
knowledge, the better the system.

TYPE-2 FUZZY LOGIC SYSTEMS IN APPLICATIONS: MANAGING DATA . . .

5.1 Data sets and methods of comparison

All dataset used in the experiment are taken
from the production installation logs of one of the
biggest industrial locations in Poland, see [38]. The
number of samples in each dataset is 100,000 and it
corresponds to about 56 hours of continuous work
of the installation, since samples are read from sen-
sors every 2s; this time interval is related to ca-
pabilities of the solenoid valves used to dispense
ammonia, the inertia of the system and some le-
gal regulations on emission of nitrogen oxides (the
maximum permitted value is 400mg/m3). More-
over, different datasets are selected from periods
with different weather parameters. Finally, 6 data
sets, |X1| = |X2| = |X3| = 10000 and |X4| = |X5| =
|X6| = 100000 samples each, Xi = {x1,x2, . . . ,xn},
where x j = (x1,x2) ∈ XNO ×XNO2, i = 1,2, . . . ,6,
j = 1,2, . . . ,n, n = 10000 for i = 1,2,3 or n =
100000 for i = 4,5,6. x j is pair of values of con-
centration of NO and NO2 (read from sensors of the
DeNOx system) expressed with integers in [0,400]
mg/m3.

The results calculated by each of tested vari-
ant of a designed fuzzy logic system are compared
with the data proposed by experts. For each set of
samples two vectors are created: E – vector con-
taining the output values proposed by the experts,
C – vector containing the output values computed
by a fuzzy logic system. Both vectors of the same
length, and they are compared using three different
methods: minimum-maximum (min-max), Pearson
Correlation Coefficient (PCC), and Mean Absolute
Percent Error (MAPE).

min-max(E,C) =
∑n

i=1 min{ei,ci}
∑n

i=1 max{ei,ci}
, (13)

where E = {e1,e2, ...,en}, C = {c1,c2, ...,cn}, ci is
the value calculated by the fuzzy system, and ei is
the value forecasted by the human expert, for the
same index i. The values of the min-max(E,C) ∈
[0,1] method show the similarity of vectors E and C.
The maximum value of the min-max(E,C) method
is 1 – meaning the vectors are identical.

The next similarity measure is Pearson Correla-
tion Coefficient, PCC

PCC(E,C) =
∑n

i=1(ei − e)(ci − c)√
∑n

i=1(ei − e)2
√

∑n
i=1(ci − c)2

,

(14)
where PCC(E,C) ∈ [−1,1], e = 1

n ∑n
i=1 ei, c =

1
n ∑n

i=1 ci. Value −1 means total negative correla-

tion between E and C, 0 means no correlation, and
1 means total positive correlation.

The third measure is Mean Absolute Percentage
Error (MAPE)

MAPE(E,C) =
1
n∑n

i=1

∣∣∣ci − ei

ci

∣∣∣, (15)

and its value is expressed in [%] – the smaller per-
centage, the larger similarity.

5.2 Results and discussion

The simulation analysis of the most efficient
type-1 fuzzy logic systems is now reminded, cf. [15,
16]. Input and output data are represented by tradi-
tional fuzzy sets with triangular membership func-
tions. For each of two inputs and for the output, 4
fuzzy sets representing linguistic labels are defined.
The results for traditional FLSs with different im-
plications and learning fuzzy rules algorithms (see
Section 3) are collected in Table 4. Row. 1 con-
tains results produced by a traditioinal fuzzy logic
system with T -norms as implication operators. It
is clearly visible that using new engineering impli-
cations and/or new methods of learning fuzzy rules
affects the final results, see rows 2., 3. (for engi-
neering applications) and rows 4.-6. (for learning
fuzzy rules algorithms), as similarity increases and
MAPE decreases meaningfully. The results for the
system described in row 7. are the most similar to
expert expectations (FLS with engineering implica-
tion (3) and learning fuzzy rules via Algorithm 1).

Nevertheless, the main goal of the research is to
design an test type-2 fuzzy logic systems. Details
of their structure are given in Section 4. The cre-
ated type-2 fuzzy logic systems are simulated in a
few different variants. Type-2 fuzzy sets with tri-
angular primary membership functions are used to
represent input and output data. The basic variant
of the system, based on triangular norms as impli-
cation operators, is then enhanced with engineering
implications (9), (10) and/or learning type-2 fuzzy
rules methods (Algorithms 4.-6.). Analogously to
the values obtained via FLSs (see Table 4), the re-
sults of experiments are recorded as vectors E and
C separately for each tested system, and compared
to each other using similarity measures (13)-(15),
see Table 5. The results of simulation for 7 cho-
sen variants of type-2 fuzzy logic systems are col-
lected in rows 3.-9. Besides, they are compared to
previously applied traditional fuzzy logic systems:
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Table 4. Values of min-max, PCC and MAPE for output given by T1FLSs and by experts

min-max PCC MAPE Description
1. 0.925 0.910 19.35% Traditional FLS based on T -norm min
2. 0.930 0.912 10.05% FLS with engineering implication (3)
3. 0.930 0.912 10.18% FLS with engineering implication (4)
4. 0.960 0.959 9.83% FLS with learning fuzzy rules: Algorithm 1
5. 0.951 0.945 9.95% FLS with learning fuzzy rules: Algorithm 2
6. 0.955 0.955 9.87% FLS with learning fuzzy rules: Algorithm 3
7. 0.962 0.962 9.64% FLS with engineering implication (3)

and learning fuzzy rules via Algorithm 1

typical one based on T -norms (row 1.) and the
best one with new methods applied (row 2.). The
most efficient type-2 fuzzy logic system is based on
the proposed engineering type-2 implication (9) and
learning type-2 fuzzy rules Algorithm 4. It is visi-
ble that the use of type-2 fuzzy logic systems with
the proposed algorithms for learning type-2 fuzzy
rules applied improve visibly the results in com-
parison to T2FLSs without learning rules (rows 4.,
5.), and, moreover, to previously applied traditional
fuzzy logic systems (rows 1., 2.).

The similarity results presented in Table 5 can
also be translated into absolute numbers expressing
amount of nitrogen oxides, the emission of which is
reduced thanks to applying type-2 fuzzy logic sys-
tems with new methods instead of traditional fuzzy
logic. Although the results listed in Table 5 dif-
fer only slightly, one must take into account that
these differences are related to huge amounts of
NO and NO2 emitted to the atmosphere. The year
production of 8100Mg is declared in [38], hence
the accuracy of ammonia dosing (via the min-max
method) improved with respect to expert expecta-
tions from 0.925 (by traditional FLS, row 1.) to
0.970 (by T2FLS in row 9.), means that the differ-
ence is 0.045, which is the equivalent of 365Mg less
nitrogen oxides emitted to the atmosphere per year.
Or in other words, it is ∼ 30Mg of nitrogen oxides
per month, which is the equivalent of ∼ 80mln m3

more air totally free of nitrogen oxides per month.

6 Conclusions

The new solutions in the field presented in this
article and, especially, the results of analysis con-
firm that it is promising to develop applications of
type-2 fuzzy logic that enable efficient management

of gas emission in the filtration system DeNOx. The
most important is that the type-2 fuzzy logic sys-
tems, especially these using the proposed engineer-
ing fuzzy implications and learning fuzzy rules al-
gorithms (see Section 4) allow us to increase con-
sistency of obtained results with experts’ expecta-
tions, in comparison to results of type-1 fuzzy logic
systems applied previously [14, 15, 16, 17]. This
is because possible defining ”confidence levels” for
experts as secondary membership degrees in terms
of type-2 fuzzy sets. It should also be emphasized
that the implementation of the proposed solutions
meets the requirements of real-time systems and it
can be applied continuously to analyse measure-
ments taken every 2s. The average time neces-
sary to calculate the degree of valve opening by the
fuzzy logic system is 2ms and the same result is
achieved for type-2 fuzzy logic systems.

All the research presented allow us to claim
that the DeNOx filter system can be efficiently sup-
ported by the proposed fuzzy logic systems as well
as by the proposed type-2 fuzzy logic systems. The
important conclusion is that T2FLSs do it more
precisely than traditional FLSs, mostly because of
more thorough representation of imprecise infor-
mation, that leads to better compatibility of results
with expectations of experts. In future, further re-
search on applications of higher order fuzzy logic
systems in the computer management of industrial
gases emission are worth continuing and may point
at new opportunities and challenges in this field.
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