PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Biochar Substrates and their Combination with Fertilization as a Factor Affecting the Changes in pH and Surface Charge of Soil Particles in Soils with Different Texture

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In 2017 the field experiments were established at two localities of the South-west Slovakia (1 Dolná Streda: sandy Arenosol and 2 Veľké Úľany: loamy Chernozem). The experiments involved biochar substrates (1 BS1 mix biochar, sheep manure and 2 BS2 mix biochar, sheep manure and digestate) in two application doses (10 and 20 t ha-1), which were applied independently compared with the unfertilized control (Co-NF) and combined with additional fertilization versus the fertilized control (Co-F), in order to verify their impacts on the changes of soil properties. In the spring and autumn of 2018–2020, within these experiments the soil samples were taken to determine the range of effect of the tested biochar substrates (BS) and also their combination with fertilization (F) on the changes of soil pH and surface charge of soil particles in the soils different in texture. The results pointed out the fact that a more significant effect of tested BS on soil pH was detected in sandy soil than loamy soil. In sandy soil, only the application of BS2 in doses 10 and 20 t ha-1 statistically significantly increased the soil pH in H2O in comparison with Co-NF. The application BS1 + F in dose 10 t ha-1 and BS2+F in dose 20 t ha-1 statistically significantly increased pH in KCl compared with Co-F. The fertilization to BS eliminated the considerable decrease of the soil pH in H2O both soils. In sandy soil, pH was substantially regulated by the content of alkali cations themselves in BS; however, in loamy soil, it occurred as a result of the increase of the content of soil organic carbon after the application of BS (R2 = 0.339), but also BS + F (R2 = 0.468). In sandy soil, the application of BS itself, owing to the change of the surface charge, influenced predominantly the sorption of anions. Conversely, the additional fertilization to BS treatments had an impact on the sorption of cations. In loamy soil, the application of BS and BS + F as a result of the change of surface charge did not have any significant effect on the total soil sorption.
Słowa kluczowe
Rocznik
Strony
44--53
Opis fizyczny
Bibliogr. 21 poz., rys., tab.
Twórcy
  • Department of Soil Science, Intitute of Agronomic Sciences, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia
  • Department of Soil Science, Intitute of Agronomic Sciences, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia
  • Centre of Languages, Slovak University of Agriculture, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia
Bibliografia
  • 1. Dziadowiec H., Gonet S.S. 1999. Estimation of soil organic carbon by Tiurin’s method. Methodical guide-book for soil organic matter studies, 120, 7–8. (in Polish)
  • 2. El-Naggar A., Lee S.S., Rinklebe J., Farooq M., Song H., Sarmah A.K., Zimmerman A.R.M., Shaheen S.M., Ok Y.J. 2019. Biochar application to low fertility soils: A review of current status, and future prospects. Geoderma, 337, 536–557.
  • 3. Enders A., Hanley K., Whitman T., Joseph S., Lehmann J. 2012. Characterization of biochars to evaluate recaltricance and agronomic performance. Bioresource Technology, 114, 644–653.
  • 4. Fischer D., Glaser B. 2012. Synergisms between compost and biochar for sustainable soil amelioration. In: Kumar S. (Ed), Management of Organic Waste, Tech Europe, Rijeka, 167–198.
  • 5. Haineglaw N.S., Mercl F., Pračke K., Szaková J., Tloustoš P. 2019. Mutual relationships of biochar and soil pH, CEC, and exchangeable base cation in a model laboratory experiment. Journal of Soil and Sediments, 19, 2405–2416.
  • 6. Hanes J. 1999. Analyzes of sorptive characteristics. SSCRI, Bratislava. (in Slovak)
  • 7. Heikkinen J., Keskinena R., Soinnea H., Hyväluomaa J., Nikamaa J., Wikbergb H., Källib A., Siipolab V., Melkiorc T., Dupontd C., Camparguee M., Larssonf S.H., Hannulag M., Rasaa K. 2019. Possibilities to improve soil aggregate stability using biochars derived from various biomasses through slow pyrolysis, hydrothermal carbonization, or torrefaction. Geoderma, 344, 40–49.
  • 8. Horák J. 2015. Testing biochar as a possible way to ameliorate slightly acidic soil at the research field located in the Danubian lowland. Acta Horticulturae et Regiotecturae, 18, 20–24.
  • 9. Hrivňáková K., Makovníková J., Barančíková G., Bezák P., Bezáková Z., Dodok R., Grečo V., Chlpík J., Kobza J., Lištjak M., Mališ J., Píš V., Schlosserová J., Slávik O., Styk J., Širáň M. 2011. Uniform methods of soil analyses. VÚPOP, Bratislava. (in Slovak)
  • 10. Ippolito J.A., Spokas K.A., Novak J.F., Lentz R.D., Cantrell K.B. 2015. Biochar elemental composition and factors influencing nutrient retention. In: Lehmann J., Joseph S. (Eds.). Biochar for environmental management, Routledge, Taylor and Francis Group, New York, 301–325.
  • 11. Juriga M., Šimanský V. 2019. Effect of biochar and its reapplication on soil pH and sorption properties of silt loam Haplic Luvisol. Acta Horticulturae et Regiotecturae, 22(2), 65–70.
  • 12. Liang B., Lehmann J., Solomon D., Kinyangi J., Grossman J., O’Neill B., Skjemstad J.O., Thies J., Luizao F.J., Petersen J., Neves E.G. 2006. Black carbon increases cation exchange capacity in soils. Soil Science Society of American Journal, 70, 1719–1730.
  • 13. Novak J.M., Busscher W.J., Wats D.W., Laird D.A., Ammenda M.A., Niandou M.A.S. 2009. Short-term CO2 mineralization after additions of biochar and switchgrass to a Typic Kandiudult. Geoderma, 154, 281–288.
  • 14. Šimanský V., Aydın E., Horák J. 2022. Is it possible to control the nutrient regime of soils with different texture through biochar substrates? Case study in Slovakia. Agronomy, 11, 51.
  • 15. Šimanský V., Horák J., Igaz D., Balashov E., Jonczak J. 2018a. Biochar and biochar with N fertilizer as a potential tool for improving soil sorption of nutrients. Journal of Soils and Sediments, 18(8), 1432–1440.
  • 16. Šimanský V., Juriga M., Horák J. 2019a. Aplikácia biouhlia a jeho kombinácia s N hnojením ako faktor ovplyvňujúci zmeny pôdnej reakcie a povrchového náboja pôdnych častíc. In: Výskum vplyvu biotických a abiotických faktorov na zložky systému pôda-voda-atmosféra-rastlinný kryt. SPU, Nitra, 30–37. (in Slovak)
  • 17. Šimanský V., Polláková N., Chlpík J., Kolenčík M. 2018. Soil science. SUA, Nitra, (in Slovak).
  • 18. Šimanský V., Šrank D., Juriga M. 2019. Differences in soil properties and crop yields after application of biochar blended with farmyard manure in sandy and loamy soils. Acta fytotechnica et zootechnica, 22(1), 21–25.
  • 19. Šrank D., Šimanský V. 2020. Zmena pôdnej organickej hmoty a humusu po aplikácii biouhlíkových substrátov: štúdia na poľnom experimente na černozemi v juhozápadnej časti Slovenska. Agrochémia, 60(2), 23–30.
  • 20. Yan F., Schubert S., Mengel K. 1996. Soil pH increase due to biological decarboxylation of organic anions. Soil Biology and Biochemistry, 28, 617–624.
  • 21. Zołotajkin M., Ciba J., Kluczka J., Skwira M., Smoliński A. 2011. Exchangeable and Bioavailable Aluminium in the Mountain Forest Soil of BaraniaGóra Range (Silesian Beskids, Poland). Water, Air, Soil Pollution, 216, 571–580.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-10d9edc0-0a61-42ca-81c8-b12fbbfe186b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.