Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Purpose: The main purpose of the article is to present interesting forms of platinum at a nanometric scale. There are multiple fabrication methods of nanoparticles, nanowires and other forms of platinum, and the methods proposed in the article are simple and effective. They employ carbon nanotubes in the form of a so-called forest, manufactured by CVD methods and nanotubes dispergated (in a water or ethylene glycol solution) as templates for deposition of Pt nanoforms. Design/methodology/approach: Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM) were applied for showing the structure and morphology of platinum nanoforms deposited on carbon nanotubes, and Energy Dispersive Spectroscopy (EDS) was used for confirming the chemical composition of the analysed structures. Findings: The microscope examinations carried out with scanning electron microscopy have shown that platinum may crystallise by assuming the form of, notably, nanoparticles, nanowires and nanocubes. The structure of carbon nanotubes covered with nanoparticles of Pt at a nanoscale could have been observed by applying high-resolution transmission electron microscopy. Practical implications: Carbon nanotubes decorated with Pt nanoparticles and platinum at a nanometric scale are used as, in particular, an active layer of chemical and biochemical sensors. In addition, excellent catalytic properties of platinum are used in various industrial processes, including chemical, automotive and petroleum industry. Originality/value: Chloroplatinic acid H2PtCl6 is an input substance for producing various forms of platinum. Platinum exhibits unique physiochemical properties at a nanoscale, different than its properties at a macro scale. It was confirmed that the selected fabrication method of platinum nanoforms is effective and simple.
Słowa kluczowe
Wydawca
Rocznik
Tom
Strony
53--62
Opis fizyczny
Bibliogr. 47 poz.
Twórcy
- Faculty of Mechanical Engineering, Silesian University of Technology, Konarskiego 18A, 44-100 Gliwice, Poland
autor
- Faculty of Mechanical Engineering, Silesian University of Technology, Konarskiego 18A, 44-100 Gliwice, Poland
autor
- Faculty of Mechanical Engineering, Silesian University of Technology, Konarskiego 18A, 44-100 Gliwice, Poland
autor
- Faculty of Mechanical Engineering, Silesian University of Technology, Konarskiego 18A, 44-100 Gliwice, Poland
autor
- Department of Materials Science & Metallurgy, University of Cambridge UK, 27 Charles Babbage Rd, CB3 0FS Cambridge, United Kingdom
Bibliografia
- [1] V.V. Pokropivny, V.V. Skorokhod, Classification of nanostructures by dimensionality and concept of surface forms engineering in nanomaterial science, Materials Science and Engineering: C 27/5-8 (2007) 990-993.
- [2] J.N. Tiwaria, R.N. Tiwarib, K.S. Kima, Zero-dimensional, one-dimensional, two-dimensional and three-dimensional nanostructured materials for advanced electrochemical energy devices, Progress in Materials Science 57/4 (2012) 724-803.
- [3] C.C. Koch (ed.), Structural nanocrystalline materials: fundamentals and applications, Cambridge University Press, Cambridge, 2007.
- [4] M. Auffan, J. Rose, J.-Y. Bottero, G.V. Lowry, J.P. Jolivet, M.R. Wiesner, Towards a definition of inorganic nanoparticles from an environmental, health and safety perspective, Nature Nanotechnology 4 (2009) 634-641.
- [5] E. Amstad, M. Gopinadhan, C. Holtze, C.O. Osuji, M.P. Brenner, F. Spaepen, D.A. Weitz, Production of amorphous nanoparticles by supersonic spray-drying with a microfluidic nebulator, Science 349/6251 (2015) 956-960.
- [6] C. Buzea, I.I. Pacheco Blandino, K. Robbie, Nanomaterials and nanoparticles: Sources and toxicity, Biointerphases 2/4 (2007) MR17- MR172.
- [7] V.J. Mohanraj, Y. Chen, Nanoparticles – A Review, Tropical Journal of Pharmaceutical Research 5/1 (2006) 561-573.
- [8] P.J.A. Borm, D. Robbins, S. Haubold, T. Kuhlbusch, H. Fissan, K. Donaldson, R.P. Schins, V. Stone, W. Kreyling, J. Lademann, J. Krutmann, D. Warheit, E. Oberdorster, The potential risks of nanomaterials: a review carried out for ECETOC, Particle and Fibre Toxicology 3/1 (2006) 1-35.
- [9] J. Zhang, W. Wang, X. Liu, Ag–ZnO hybrid nanopyramids for high visible-light photocatalytic hydrogen production performance, Materials Letters 110 (2013) 204-207.
- [10] Y. Sun, Y. Xia, Shape-Controlled Synthesis of Gold and Silver Nanoparticles, Science 298 (2002) 2176-2179.
- [11] C.J. Murphy, Nanocubes and Nanoboxes, Science 298/5601 (2002) 2139-2141.
- [12] P. Jagdale, J.M. Tulliani, A. Tagliaferro , A. Lopez, I. Prestini, G. Ferro, Carbon Nano Beads (CNBs): a new ingredient in reinforcing materials, Workshop IGF, Forni di Sopra (UD) (2012) 113-119.
- [13] V.N. Mochalin, O. Shenderova, D. Ho, Y. Gogotsi, The properties and applications of nanodiamonds, Nature Nanotechnology 7 (2012) 11-23.
- [14] J.R. Rostrup-Nielsen, J. Sehested, Whisker Carbon Revisited, Studies in Surface Science and Catalysis 139 (2001) 1-12.
- [15] X. Gu, C. Nie, Y. Lai, Ch. Lin, Synthesis of silver nanorods and nanowires by tartrate-reduced route in aqueous solutions, Materials Chemistry and Physics 96/2-3 (2006) 217-222.
- [16] Q. Li, Y. Cao, Preparation and Characterization of Gold Nanorods, Nanorods, O. Yalçõn (Ed.) InTech, 2012.
- [17] L.A. Dobrzański, A. Hudecki, Structure, geometrical characteristics and properties of biodegradable microand polycaprolactone nanofibers, Archives of Materials Science and Engineering 70/1 (2014) 5-13.
- [18] L.A. Dobrzański, A. Hudecki, G. Chladek, W. Król, A. Mertas, Surface properties and antimicrobial activity of composite nanofibers of polycaprolactone with silver precipitations, Archives of Materials Science and Engineering 70/2 (2014) 53-60.
- [19] K.M. Yuna, C.J. Hogan Jr., Y. Matsubayashic, M. Kawabec, F. Iskandara, K. Okuyama, Nanoparticle filtration by electrospun polymer fibers, Chemical Engineering Science 62/7 (2007) 4751-4759.
- [20] N.R. Jana, L. Gearheart, C.J. Murphy, Wet chemical synthesis of silver nanorods and nanowires of controllable aspect ratio, Chemical Communications 7 (2001) 617-618.
- [21] J. Feliciano, M.M. Martínez-Iñesta, Synthesis and characterization of Pd, Cu, and Ag nanowires in anodic alumina membranes using solid state reduction, Materials Letters 82 (2012) 211-213.
- [22] Y. Cui, Q. Wei, H. Park, and C.M. Lieber, Nanowire Nanosensors for Highly Sensitive and Selective Detection of Biological and Chemical Species, Science 293 (2001) 1289-1292.
- [23] K. Aslan, Z. Leonenko, J.R. Lakowicz, C.D. Geddes, Fast and Slow Deposition of Silver Nanorods on Planar Surfaces: Application to Metal-Enhanced Fluorescence, The Journal of Physical Chemistry B 109 (2005) 3157-3162.
- [24] S. Iijima, Helical microtubules of graphitic carbon, Nature 354 (1991) 56-58.
- [25] Q. Zhang, J.-Q. Huang, M.-Q. Zhao, W.-Z. Qian, F. Wei, Carbon Nanotube Mass Production: Principles and Processes, ChemSusChem 4/7 (2011) 864- 889.
- [26] C. Paukner, K. K. Koziol Ultra-pure single wall carbon nanotube fibres continuously spun without promoter, Scientific Reports 4 (2014) 1-7.
- [27] L. Liu, W. Ma, Z. Zhang, Macroscopic Carbon Nanotube Assemblies: Preparation, Properties, and Potential Applications, Small 7/11 (2011) 1504-1520.
- [28] A.D. Dobrzańska-Danikiewicz, D. Cichocki, M. Pawlyta, D. Łukowiec, W. Wolany, Synthesis conditions of carbon nanotubes with the chemical vapor deposition method, Physica Status Solidi (b) 251/12 (2014) 2420-2425.
- [29] R. Tenne, Inorganic nanotubes and fullerene-like nanoparticles, Nature Nanotechnology 1/2 (2006) 103-111.
- [30] R. Tenne, Recent advances in the research of inorganic nanotubes and fullerene-like nanoparticles, Frontiers of Physics 9/3 (2014) 370-377.
- [31] R. Arbain, M. Othman, S. Palaniandy, Preparation of iron oxide nanoparticles by mechanical milling, Minerals Engineering 24/1 (2011) 1-9.
- [32] P. Szewczyk, Nanotechnologies: technical, environmental and social aspects, Silesian University of Technology Press, Gliwice, 2011 (in Polish).
- [33] Y.B. He, G.R. Li, Z.L. Wang, Y.N. Ou, Y.X. Tong, Pt Nanorods Aggregates with Enhanced Electrocatalytic Activity toward Methanol Oxidation, The Journal of Physical Chemistry C 114/45 (2010) 19175-19181.
- [34] S. Sun, G. Zhang, D. Geng, Y. Chen, M. N. Banis, R. Li, M. Cai, X. Sun, Direct Growth of Single-Crystal Pt Nanowires on Sn@CNT Nanocable: 3D Electrodes for Highly Active Electrocatalysts, Chemistry - A European Journal 16/3 (2010) 829-835.
- [35] E.P. Lee, Z. Peng, D. M. Cate, H. Yang, C.T. Campbell, Y. Xia, Growing Pt Nanowires as a Densely Packed Array on Metal Gauze, Journal of the American Chemical Society 129/35 (2007) 10634- 10635.
- [36] S.M. Choi, J.H. Kim, J.Y. Jung, E.Y. Yoon, W.B. Kim, Pt nanowires prepared via a polymer template method: Its promise toward high Pt-loaded electrocatalysts for methanol oxidation, Electrochimica Acta 53 (2008) 5804-5811.
- [37] P. Niedzia kowski, R. Bogdanowicz, P. Zięba, J. Wysocka, J. Ryl, M. Sobaszek, T. Ossowski, Melaminemodified Boron-doped Diamond towards Enhanced Detection of Adenine, Guanine and Caffeine, Electroanalysis 27 (2015) 1-12.
- [38] M. Sobaszek, K. Siuzdak, M. Sawczak, J. Ryl, R. Bogdanowicz, Fabrication and characterization of composite TiO2 nanotubes/boron-doped diamond electrodes towards enhanced supercapacitors, Thin Solid Films (2015) in print
- [39] S. Zhu, G. Xu, Single-walled carbon nanohorns and their applications, Nanoscale 2 (2010) 2538-2549.
- [40] S. Sun, G. Zhang, Y. Zhong, H. Liu, R. Li, X. Zhou, X. Sun, Ultrathin single crystal Pt nanowires grown on N-doped carbon nanotubes, Chemical Communications (2009) 7048-7050.
- [41] D. Łukowiec, PhD Thesis: The structure and properties of nanocomposites composed of carbon nanotubes coated with platinum nanoparticles, Silesian University of Technology, Gliwice 2014 (in Polish).
- [42] A.D. Dobrzańska-Danikiewicz, M. Pawlyta, D. Łukowiec, D. Cichocki, W. Wolany, CVD synthesis of MWCNTs using Fe catalyst, Archives of Materials Science and Engineering 65/2 (2014) 58-65.
- [43] A.D. Dobrzańska-Danikiewicz, D. Łukowiec, D. Cichocki, W. Wolany, Carbon nanotubes manufacturing using the CVD equipment against the background of other methods, Archives of Materials Science and Engineering 64/2 (2013) 103-109.
- [44] S.W. Pattinson, K. Prehn, I. A. Kinloch, D. Eder, K.K.K. Koziol, K. Schulte, A.H. Windle, The life and death of carbon nanotubes, RSC Advances 2 (2012) 2909-2913.
- [45] A.D. Dobrzańska-Danikiewicz, D. Łukowiec, D. Cichocki, W. Wolany, Nanocomposites composed of carbon nanotubes coated with nanocrystals of noble metals, Open Accessm Library 5/2 (2015) 1-131 (in Polish).
- [46] W. Lei, D. Liu, P. Zhu, X. Chen, J. Hao, Q. Wang, Q. Cui, G. Zou, One-step synthesis of AlN branched nanostructures by an improved DC arc discharge plasma method, CrystEngComm 12 (2010) 511-516.
- [47] T. Zhang, Z. Tao, J. Chen, Magnesium-air batteries: from principle to application, Materials Horizons 1 (2014) 196.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-10d8e17b-8e80-4c19-b548-7c32fb1ab63e