Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Motivated by results on strongly convex and strongly Jensen-convex functions by R. Ger and K. Nikodem in [Strongly convex functions of higher order, Nonlinear Anal. 74 (2011), 661-665] we investigate strongly Wright-convex functions of higher order and we prove decomposition and characterization theorems for them. Our decomposition theorem states that a function / is strongly Wright-convex of order n if and only if it is of the form [formula], where g is a (continuous) n-convex function and p is a polynomial function of degree n. This is a counterpart of Ng's decomposition theorem for Wright-convex functions. We also characterize higher order strongly Wright-convex functions via generalized derivatives.
Czasopismo
Rocznik
Tom
Strony
37--46
Opis fizyczny
Bibliogr. 25 poz.
Twórcy
autor
- University of Debrecen Faculty of Informatics Pf. 12, 4010 Debrecen, Hungary
autor
- Universidad Central de Venezuela Escuela de Matematicas Caracas, Venezuela
autor
- University of Bielsko-Biała Department of Mathematics and Computer Science ul. Willowa 2, 43-309 Bielsko-Biała, Poland
autor
- University of Debrecen Institute of Mathematics Pf. 12, 4010 Debrecen, Hungary
Bibliografia
- [1] A. Azócar, J. Gimenez, K. Nikodem, J. L. Sanchez, On strongly midconvex functions, Opuscula Math. 31 (2011), 15-26.
- [2] A. Dinghas, Zur Theorie der gewohnlichen Differentialgleichungen, Ann. Acad. Sci. Fennicae, Ser. A I 375 (1966).
- [3] G. Friedel, Zur Theorie der Intervallableitung reller Funktionen, Diss., Freie Univ. Berlin, 1968.
- [4] R. Ger, K. Nikodem, Strongly convex functions of higher order, Nonlinear Anal. 74 (2011), 661-665.
- [5] A. Gilanyi, Zs. Pales, On Dinghas-type derivatives and convex functions of higher order, Real Anal. Exchange 27 (2001/2002), 485-493.
- [6] A. Gilanyi, Zs. Pales, On convex functions of higher order, Math. Inequal. Appl. 11
- (2008), 271-282.
- [7] E. Hopl, fiber die Zusammenhange zwischen gewissen hoheren Differenzenquotienten reeller Funktionen einer reellen Variablen und deren Differenzierbarkeitseigenschaften, Diss., Friedrich Wilhelms Univ., Berlin, 1926.
- [8] M.V. Jovanovic, A note on strongly convex and strongly quasiconvex functions, Math. Notes 60 (1996), 778-779.
- [9] Z. Kominek, On additive and convex functionals, Radovi Mat. 3 (1987), 267-279.
- [10] M. Kuczma, An Introduction to the Theory of Functional Equations and Inequalities, Państwowe Wydawnictwo Naukowe - Uniwersytet Śląski, Warszawa-Kraków-Katowice, 1985.
- [11] M. Kuczma, An Introduction to the Theory of Functional Equations and Inequalities, 2nd ed., Birkhauser Verlag, 2009.
- [12] Gy. Maksa, Zs. Pales, Decomposition of higher order Wright-convex functions, J. Math. Anal. Appl. 359 (2009), 439-443.
- [13] N. Merentes, K. Nikodem, Remarks on strongly convex functions, Aequationes Math. 80 (2010), 193-199.
- [14] N. Merentes, K. Nikodem, S. Rivas, Remarks on strongly Wright-convex functions, Ann. Polon. Math. 102 (2011), 271-278.
- [15] L. Montrucchio, Lipschitz continuous policy functions for strongly concave optimization problems, J. Math. Economy 16 (1987), 259-273.
- [16] C.T. Ng, Functions generating Schur-convex sums, [in:] W. Walter (ed.), General Inequalities 5, Oberwolfach, 1986, International Series of Numerical Mathematics, vol. 80, Birkhauser Verlag, Basel, Boston, 1987, 433-438.
- [17] K. Nikodem, Zs. Pales, Characterizations of inner product spaces by strongly convex functions, Banach J. Math. Anal. 5 (2011), 83-87.
- [18] K. Nikodem, T. Rajba, Sz. Wąsowicz, Functions generating strongly Schur-convex sums, in C. Bandle, A. Gilanyi, L. Losonczi, M. Plum (eds.), Inequalities and Applications 2010, International Series of Numerical Mathematics, vol. 161, Birkhauser Verlag, Basel, Boston, Berlin, 2012, 175-182.
- [19] B.T. Polyak, Existence theorems and convergence of minimizing sequences in extremum problems with restrictions, Soviet Math. Dokl. 7 (1966), 72-75.
- [20] T. Popoviciu, Sur quelques proprietes des fonctions d'une ou de deux variables reelles, Mathematica (Cluj) 8 (1934), 1-85.
- [21] T. Popoviciu, Les fonctions convexes, Hermann et Cie, Paris, 1944.
- [22] T. Rajba, Sz. Wąsowicz, Probabilistic characterization of strong convexity, Opuscula Math. 31 (2011), 97-103.
- [23] A.W. Roberts, D.E. Varberg, Convex Functions, Academic Press, New York-London, 1973.
- [24] J. P. Vial, Strong convexity of sets and functions, J. Math. Economy 9 (1982), 187-205.
- [25] P. Volkmann, Die Aquivalenz zweier Ableitungsbegriffe, Diss., Freie Univ. Berlin, 1971.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-10d49bc8-529f-4e91-9365-474a3b14d216