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Abstract. Motivated by results on strongly convex and strongly Jensen-convex functions
by R. Ger and K. Nikodem in [Strongly convex functions of higher order, Nonlinear Anal.
74 (2011), 661–665] we investigate strongly Wright-convex functions of higher order and we
prove decomposition and characterization theorems for them. Our decomposition theorem
states that a function f is strongly Wright-convex of order n if and only if it is of the form
f(x) = g(x)+p(x)+cxn+1, where g is a (continuous) n-convex function and p is a polynomial
function of degree n. This is a counterpart of Ng’s decomposition theorem for Wright-convex
functions. We also characterize higher order strongly Wright-convex functions via generalized
derivatives.
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1. INTRODUCTION

Let c be a positive constant and I ⊆ R be an interval. A function f : I → R is called

– strongly convex with modulus c if

f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y)− ct(1− t)(x− y)2 (1.1)

for all x, y ∈ I and t ∈ [0, 1];
– strongly Wright-convex with modulus c if

f(tx+ (1− t)y) + f((1− t)x+ ty) ≤ f(x) + f(y)− 2ct(1− t)(x− y)2 (1.2)

for all x, y ∈ I and t ∈ [0, 1];
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– strongly Jensen-convex with modulus c if

f

(
x+ y

2

)
≤ f(x) + f(y)

2
− c

4
(x− y)2 (1.3)

for all x, y ∈ I.
Note that every strongly convex function is also strongly Wright-convex and every
strongly Wright-convex function is also strongly Jensen-convex with the same modulus
c, but the converse statement is not true (cf. [14, Example 1.1]). Strongly convex func-
tions were introduced in the paper [19] by B. T. Polyak and they play an important
role in optimization theory and mathematical economics. Several results on their be-
haviour and applications can be found in the literature (cf., e.g., [4,8,13,15,19,22–24]).
The concept of strongly Wright-convex functions was introduced by N. Merentes,
K. Nikodem and S. Rivas in [14] (in connection with their study we also refer to [18]),
while strongly Jensen-convex functions were considered, among others, in [1, 4, 17],
and [24].

Obviously, the usual notion of convexity, Wright-convexity and Jensen-convexity
can be obtained from the definition above in the case when c = 0. In [16], C. T. Ng
proved that each Wright-convex function f can be represented as the sum of a con-
vex and an additive function (cf. also [9]). A decomposition of real valued strongly
Wright-convex functions f defined on an interval I of the form f(x) = h(x)+a(x)+cx2,
(x ∈ I), where h is a convex function and a is an additive function, was obtained in
[14]. The aim of this note is to generalize this result to strongly Wright-convex func-
tions of higher order. We also present a characterization of strongly Wright-convex
functions of higher order via generalized derivatives.

We note that, throughout this paper, all of our considerations remain valid in the
case when the constant c is negative. Then the results so formulated concern higher
order approximate convexity, Wright-convexity, and Jensen-convexity, respectively.

2. NOTATION, TERMINOLOGY AND BASIC PROPERTIES

First we recall and also introduce the basic definitions that we shall use throughout
this paper. Let n be a positive integer and let I ⊆ R be an interval.

The nth order divided difference of a function f : I → R with respect to the
pairwise distinct points x0, . . . , xn ∈ I is defined by

[x0, . . . , xn; f ] =
n∑

i=0

f(xi)∏n
j=0
j 6=i

(xi − xj)
. (2.1)

It is easy to prove that they satisfy the recursivity property

[x0, . . . , xn; f ] =
[x1, . . . , xn; f ]− [x0, . . . , xn−1; f ]

xn − x0
(2.2)

for all positive integers n and x0, . . . , xn ∈ I, where [x0; f ] = f(x0).
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According to E. Hopf ([7]) and T. Popoviciu ([20, 21]), a function f : I → R is
called convex of order n− 1 on I (or monotone of order n) on I if

[x0, . . . , xn; f ] ≥ 0

holds for all x0 < · · · < xn ∈ I. By the definition of R. Ger and K. Nikodem ([4]), if
c is a positive real number, a function f : I → R is called strongly convex of order n
with modulus c (or strongly n-convex with modulus c) if

[x0, . . . , xn+1; f ] ≥ c (2.3)

is valid for all x0 < · · · < xn+1 in I.
The ∆h1,...,hn

difference of f : I → R with increments h1, . . . , hn is defined recur-
sively by

∆h1f(x) = f(x+ h1)− f(x),

∆h1,...,hn
f(x) = ∆h1,...,hn−1

f(x+ hn)−∆h1,...,hn−1
f(x)

for each x ∈ I and h1, . . . , hn > 0 such that x + h1 + · · ·+ hn ∈ I. In the case when
h = h1 = · · · = hn, we also use the notation ∆n

h instead of ∆h1,...,hn .
Also based on Hopf’s ([7]) and Popoviciu’s ([20,21]) definition, a function f : I → R

is said to be Jensen-convex of order n (or n-Jensen-convex) if it satisfies the inequality

∆n+1
h f(x) ≥ 0

for all x ∈ I, h > 0 such that x + (n + 1)h ∈ I. If c is a positive real number, f is
called strongly Jensen-convex of order n with modulus c (or strongly n-Jensen-convex
with modulus c) if it fulfills

∆n+1
h f(x) ≥ c(n+ 1)!hn+1 (2.4)

for all x ∈ I, h > 0 such that x+ (n+ 1)h ∈ I (cf. [4]).
The function f is said to be Wright-convex of order n (or n-Wright-convex ) if

∆h1,...,hn+1f(x) ≥ 0

for all x ∈ I, h1, . . . , hn+1 > 0 such that x + h1 + · · · + hn+1 ∈ I. We call f strongly
Wright-convex of order n with modulus c (or strongly n-Wright-convex with modulus c)
if

∆h1,...,hn+1
f(x) ≥ c(n+ 1)!h1 · · ·hn+1 (2.5)

holds for all x ∈ I, h1, . . . , hn+1 > 0 such that x+ h1 + · · ·+ hn+1 ∈ I.
Remark 2.1. It is easy to see that the definitions of strongly n-convex functions,
strongly n-Wright-convex functions and strongly n-Jensen-convex functions, with
c = 0, give the concepts of n-convex, n-Wright-convex and n-Jensen-convex functions,
respectively.
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We will use the following property of the difference operator in the sequel.

Lemma 2.2 ([6, Lemma 5.1]). Let n be a positive integer, I ⊆ R be an interval and
f : I → R be a function. Then the equation

∆h1,...,hn
f(x) = h1 · · ·hn

∑

(i1,...,in)

[x, x+ hi1 , . . . , x+ hi1 + · · ·+ hin ; f ]

is valid for all x ∈ I, h1, . . . , hn > 0 with x+ h1 + · · ·+ hn ∈ I, where the summation
is for all permutations (i1, . . . , in) of the integers {1, . . . , n}.
Remark 2.3. It is a consequence of the statement above that every function
f : I → R which is strongly n-convex with modulus c, is also strongly n-Wright-convex
with modulus c. Indeed, if f is n-convex with modulus c, then

[
x, x+ hi1 , . . . , x+ hi1 + · · ·+ hin+1

; f
]
≥ c

for all x ∈ I and h1, . . . , hn+1 > 0, such that x+h1+ · · ·+hn+1 ∈ I, where (i1, . . . , in)
is an arbitrary permutation of the integers {1, . . . , n}. By Lemma 2.2, we have

∆h1,...,hn+1
f(x) = h1 · · ·hn+1

∑

(i1,...,in+1)

[
x, x+ hi1 , . . . , x+ hi1 + · · ·+ hin+1

; f
]

≥ c(n+ 1)!h1 · · ·hn+1,

which means that f is strongly n-Wright-convex with modulus c.
It is also easy to see that a strongly n-Wright-convex function with modulus c is

also n-Jensen-convex with modulus c.

Remark 2.4. In the case when n = 1, inequality (2.5) reduces to

∆h1,h2
f(x) ≥ 2ch1h2,

that is,
f(x+ h1 + h2)− f(x+ h1)− f(x+ h2) + f(x) ≥ 2ch1h2. (2.6)

Putting u = x, v = x + h1 + h2 and t = h2

h1+h2
, we get x + h1 = tu + (1 − t)v,

x+ h2 = (1− t)u+ tv and h1h2 = t(1− t)(u− v)2. Thus, property (2.6) gives

f(tu+ (1− t)v) + f((1− t)u+ tv) ≤ f(u) + f(v) + 2ct(1− t)(u− v)2,

which means that f is strongly Wright-convex with modulus c. Note that, if n = 1,
also (2.3) and (2.4) reduces to (1.1) and (1.3), respectively.

3. MAIN RESULTS

Before formulating our main results, we present two lemmas. They can be proved by
a simple calculation (cf. also [10] and [11, Chapter 15]).
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Lemma 3.1. The operator ∆h1,...,hn
is linear, that is, if n is a positive integer,

h1, . . . , hn and a, b are real numbers, I ⊆ R is an interval and f, g : I → R are
arbitrary functions, then

∆h1,...,hn
(af + bg) = a∆h1,...,hn

f + b∆h1,...,hn
g.

Lemma 3.2. Let n be a positive integer and let h1, . . . , hn be real numbers. Then

∆h1,...,hnx
n = n!h1 · · ·hn.

Now, we characterize higher order strongly Wright-convex functions via
Wright-convex functions of higher order.

Theorem 3.3. Let n be a positive integer, c be a positive real number, and I ⊆ R be
an interval. A function f : I → R is strongly n-Wright-convex with modulus c if and
only if the function g : I → R, g(x) = f(x)− cxn+1, (x ∈ I) is n-Wright-convex.

Proof. Suppose first that f is strongly n-Wright-convex with modulus c and let g(x) =
f(x)− cxn+1. Then, by Lemmas 3.1 and 3.2, we have

∆h1,...,hn+1g(x) = ∆h1,...,hn+1f(x)−∆h1,...,hn+1cx
n+1

≥ c(n+ 1)!h1 · · ·hn+1 − c(n+ 1)!h1 · · ·hn+1 = 0,

which implies that g is n-Wright-convex. Let us assume now that g is n-Wright-convex.
For f(x) = g(x) + cxn+1, using Lemmas 3.1 and 3.2 again, we obtain

∆h1,...,hn+1
f(x) = ∆h1,...,hn+1

g(x) + ∆h1,...,hn+1
cxn+1

≥ 0 + c(n+ 1)!h1 · · ·hn+1 = c(n+ 1)!h1 · · ·hn+1,

which gives the strong n-Wright-convexity of f with modulus c.

In the decomposition of n-Wright-convex and strongly n-Wright-convex functions,
polynomial functions are used. A function f : I → R is said to be a polynomial
function of degree n if it satisfies the equation

∆n+1
h f(x) = 0

for all x ∈ I, h > 0 such that x+ (n+ 1)h ∈ I.
The following generalization of Ng’s Theorem for Wright-convex functions of

higher order was proved by Gy. Maksa and Zs. Páles.

Theorem 3.4 ([12]). Let n be a positive integer and I ⊆ R be an open interval.
A function f : I → R is n-Wright-convex if and only if it is of the form

f(x) = h(x) + p(x) (x ∈ I), (3.1)

where h : I → R is an n-convex function and p : R → R is a polynomial function of
degree n with p(Q) = {0}. Furthermore, the decomposition in (3.1) is unique.
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The following theorem is a counterpart of the statement above for strongly
Wright-convex functions of higher order. Note that the above result was proved for
open intervals, therefore, the next result is stated also in this setting.

Theorem 3.5. Let n be a positive integer, c be a positive real number, and I ⊆ R be
an open interval. A function f : I → R is strongly n-Wright-convex with modulus c if
and only if it is of the form

f(x) = h(x) + p(x) + cxn+1 (x ∈ I), (3.2)

where h : I → R is an n-convex function and p : R → R is a polynomial function of
degree n with p(Q) = {0}. Furthermore, the decomposition in (3.2) is unique.

Proof. The statement can be obtained as a combination of Theorems 3.4 and 3.3.

In the last part of the paper, we give a characterization of higher order
Wright-convex functions via a generalized derivative introduced by Zs. Páles and
A. Gilányi in [5].

If n is a positive integer, I ⊆ R is an interval then the nth order lower generalized
Dinghas interval derivative of a function f : I → R at a point ξ ∈ I is defined by

Dnf(ξ) = lim inf
(x→ξ, h1↘0,...,hn↘0)
x≤ξ≤x+(h1+···+hn)

∆h1,...,hn
f(x)

h1 · · ·hn
.

We note that the operator Dn is superlinear, i.e., superadditive and positively homo-
geneous.

If the limit

lim
(x→ξ, h1↘0,...,hn↘0)
x≤ξ≤x+(h1+···+hn)

∆h1,...,hnf(x)

h1 · · ·hn
(3.3)

exists, we call it the nth order generalized Dinghas interval derivative of f at ξ and
we denote it by Dnf(ξ).

Remark 3.6. It is easy to see that, in the case when f is n times differentiable at ξ,
then Dnf(ξ) = f (n)(ξ), that is, D is a generalized derivative. We also note that, in the
case when h1 = · · · = hn and the limit in (3.3) exists, the definition above gives the
so called Dinghas interval derivative, introduced by A. Dinghas in [2] (cf. also [3, 25]
and [5]).

The following theorem is a simple consequence of Corollary 1 proved in [5].

Theorem 3.7. Let n be a positive integer and I ⊆ R be an interval. A function
f : I → R is n-Wright-convex on I if and only if

Dn+1f(ξ) ≥ 0

for all ξ ∈ I.
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Finally, we present the characterization theorem for strongly n-Wright-convex
functions via the generalized derivative above and we formulate its consequence for
n+ 1 times differentiable functions.

Theorem 3.8. Let n be a positive integer, c be a positive real number, and I ⊆ R be
an interval. A function f : I → R is strongly n-Wright-convex with modulus c if and
only if

Dn+1f(ξ) ≥ c(n+ 1)! (3.4)

for all ξ ∈ I.
Proof. Let first f be an n-Wright-convex function with modulus c. Then, by theo-
rem 3.3, the function g : I → R, g(x) = f(x) − cxn+1, (x ∈ I) is n-Wright-convex.
Using Theorem 3.7 and Lemmas 3.1 and 3.2, we obtain that

Dn+1f(ξ) = Dn+1
(
g(ξ) + cξn+1

)
≥ Dn+1g(ξ)+Dn+1cξn+1 ≥ 0+c(n+1)! = c(n+1)!

for all ξ ∈ I, which gives the first part of the statement. Assume now that f satisfies
inequality (3.4) with a c > 0 for all ξ ∈ I. Let us consider the function g : I → R,
g(x) = f(x)− cxn+1, (x ∈ I). It is easy to see that, by (3.4) and Lemmas 3.1 and 3.2,

Dn+1g(ξ) = Dn+1
(
f(ξ)− cξn+1

)
≥ Dn+1f(ξ) + Dn+1(−cξn+1)

≥ c(n+ 1)!− c(n+ 1)! = 0

for all ξ ∈ I, which, combined with Theorem 3.7, implies our statement.

Corollary 3.9. Let n be a positive integer, c be a positive real number, I ⊆ R be an
interval, f : I → R be a function and suppose that f is n+1 times differentiable on I.
Then f is strongly n-Wright-convex with modulus c if and only if f (n+1)(ξ) ≥ c(n+1)!
for all ξ ∈ I.
Proof. The statement is a consequence of Theorem 3.8 and Remark 3.6.

Remark 3.10. We note, that the corollary above can also be obtained as a conse-
quence of a characterization of strong convex functions of higher order via derivatives
given in Theorem 6 in [4], and the fact that in the case of continuous functions, the
classes of n-Wright-convex functions and n-convex functions coincide.

Acknowledgments
The present paper was prepared during a stay of the first, third and fourth authors
in Caracas, Venezuela, in January 2013. They are thankful for the invitation and the
very kind hospitality of the hosts during their visit.

The research of the first author was realized in the framework of the TÁMOP
4.2.2.C-11/1/KONV-2012-0001 project, the research of the last authors was realized
in the framework of the TÁMOP 4.2.4. A/2-11-1-2012-0001 “National Excellence Pro-
gram – Elaborating and operating an inland student and researcher personal support
system”. These projects were subsidized by the European Union and co-financed by the
European Social Fund. This research was also supported by the Hungarian Scientific
Research Fund (OTKA) Grant NK-81402, and K-111651.



44 Attila Gilányi, Nelson Merentes, Kazimierz Nikodem, and Zsolt Páles

REFERENCES

[1] A. Azócar, J. Giménez, K. Nikodem, J. L. Sánchez, On strongly midconvex functions,
Opuscula Math. 31 (2011), 15–26.

[2] A. Dinghas, Zur Theorie der gewöhnlichen Differentialgleichungen, Ann. Acad. Sci.
Fennicae, Ser. A I 375 (1966).

[3] G. Friedel, Zur Theorie der Intervallableitung reller Funktionen, Diss., Freie Univ.
Berlin, 1968.

[4] R. Ger, K. Nikodem, Strongly convex functions of higher order, Nonlinear Anal. 74
(2011), 661–665.

[5] A. Gilányi, Zs. Páles, On Dinghas-type derivatives and convex functions of higher order,
Real Anal. Exchange 27 (2001/2002), 485–493.

[6] A. Gilányi, Zs. Páles, On convex functions of higher order, Math. Inequal. Appl. 11
(2008), 271–282.

[7] E. Hopf, Über die Zusammenhänge zwischen gewissen höheren Differenzenquotienten
reeller Funktionen einer reellen Variablen und deren Differenzierbarkeitseigenschaften,
Diss., Friedrich Wilhelms Univ., Berlin, 1926.

[8] M.V. Jovanovič, A note on strongly convex and strongly quasiconvex functions,
Math. Notes 60 (1996), 778–779.

[9] Z. Kominek, On additive and convex functionals, Radovi Mat. 3 (1987), 267–279.

[10] M. Kuczma, An Introduction to the Theory of Functional Equations and Inequalities,
Państwowe Wydawnictwo Naukowe – Uniwersytet Śląski, Warszawa-Kraków-Katowice,
1985.

[11] M. Kuczma, An Introduction to the Theory of Functional Equations and Inequalities,
2nd ed., Birkhäuser Verlag, 2009.

[12] Gy. Maksa, Zs. Páles, Decomposition of higher order Wright-convex functions, J. Math.
Anal. Appl. 359 (2009), 439–443.

[13] N. Merentes, K. Nikodem, Remarks on strongly convex functions, Aequationes Math.
80 (2010), 193–199.

[14] N. Merentes, K. Nikodem, S. Rivas, Remarks on strongly Wright-convex functions, Ann.
Polon. Math. 102 (2011), 271–278.

[15] L. Montrucchio, Lipschitz continuous policy functions for strongly concave optimization
problems, J. Math. Economy 16 (1987), 259–273.

[16] C.T. Ng, Functions generating Schur-convex sums, [in:] W. Walter (ed.), General In-
equalities 5, Oberwolfach, 1986, International Series of Numerical Mathematics, vol. 80,
Birkhäuser Verlag, Basel, Boston, 1987, 433–438.

[17] K. Nikodem, Zs. Páles, Characterizations of inner product spaces by strongly convex
functions, Banach J. Math. Anal. 5 (2011), 83–87.



Characterizations and decomposition of strongly Wright-convex functions. . . 45

[18] K. Nikodem, T. Rajba, Sz. Wąsowicz, Functions generating strongly Schur-convex sums,
in C. Bandle, A. Gilányi, L. Losonczi, M. Plum (eds.), Inequalities and Applications
2010, International Series of Numerical Mathematics, vol. 161, Birkhäuser Verlag, Basel,
Boston, Berlin, 2012, 175–182.

[19] B.T. Polyak, Existence theorems and convergence of minimizing sequences in extremum
problems with restrictions, Soviet Math. Dokl. 7 (1966), 72–75.

[20] T. Popoviciu, Sur quelques propriétés des fonctions d’une ou de deux variables réelles,
Mathematica (Cluj) 8 (1934), 1–85.

[21] T. Popoviciu, Les fonctions convexes, Hermann et Cie, Paris, 1944.

[22] T. Rajba, Sz. Wąsowicz, Probabilistic characterization of strong convexity, Opuscula
Math. 31 (2011), 97–103.

[23] A.W. Roberts, D.E. Varberg, Convex Functions, Academic Press, New York–London,
1973.

[24] J. P. Vial, Strong convexity of sets and functions, J. Math. Economy 9 (1982), 187–205.

[25] P. Volkmann, Die Äquivalenz zweier Ableitungsbegriffe, Diss., Freie Univ. Berlin, 1971.

Attila Gilányi
gilanyi@inf.unideb.hu

University of Debrecen
Faculty of Informatics
Pf. 12, 4010 Debrecen, Hungary

Nelson Merentes
nmerucv@gmail.com

Universidad Central de Venezuela
Escuela de Matemáticas
Caracas, Venezuela

Kazimierz Nikodem
knikodem@ath.bielsko.pl

University of Bielsko-Biała
Department of Mathematics and Computer Science
ul. Willowa 2, 43-309 Bielsko-Biała, Poland

Zsolt Páles
pales@science.unideb.hu

University of Debrecen
Institute of Mathematics
Pf. 12, 4010 Debrecen, Hungary



46 Attila Gilányi, Nelson Merentes, Kazimierz Nikodem, and Zsolt Páles

Received: September 16, 2013.
Revised: March 11, 2014.
Accepted: March 21, 2014.


