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Unplanned dilution prediction in open stope mining: developing new design
charts using Artificial Neural Network classifier

Abstract

Minimizing dilution is essential in open stope mine design as excessive unplanned dilution can
compromise the operation's profitability. One of the main challenges associated with the empirical
dilution graph method used to design open stopes is how to determine the boundary of the dilution zones
objectively. Hence, this paper explores the implementation of machine learning classifiers to bridge this
gap in the conventional dilution graph method. Stope performance data consisting of the stope dilution
(unplanned dilution), the modified stability number, and the hydraulic radius were compiled from a mine
located in Kazakhstan. First, the conventional dilution graph methods were used to assess the dilution.
Next, a Feed-Forward Neural Network (FFNN) classifier was implemented to predict each level of dilution.
Overall, the FFNN results indicated that 97% of the stope surfaces were correctly classified, indicating an
excellent classification performance, while the conventional dilution graph method did not show a good
performance. In addition, the outputs of the FFNN were used to plot new dilution graphs with a
probabilistic interpretation illustrating its practicability. It was concluded that the FFNN-based classifier
could be a useful tool for open stope design in underground mines.

Keywords
open stope mining, dilution graph, stope overbreak, neural network classifier
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Mining: Developing New Design Charts Using
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Abstract

Minimizing dilution is essential in open stope mine design as excessive unplanned dilution can compromise the oper-
ation’s profitability. One of the main challenges associated with the empirical dilution graph method used to design open
stopes is how to determine the boundary of the dilution zones objectively. Hence, this paper explores the implementation of
machine learning classifiers to bridge this gap in the conventional dilution graph method. Stope performance data con-
sisting of the stope dilution (unplanned dilution), the modified stability number, and the hydraulic radius were compiled
from a mine located in Kazakhstan. First, the conventional dilution graph methods were used to assess the dilution. Next, a
Feed-Forward Neural Network (FFNN) classifier was implemented to predict each level of dilution. Overall, the FFNN
results indicated that 97% of the stope surfaces were correctly classified, indicating an excellent classification performance,
while the conventional dilution graph method did not show a good performance. In addition, the outputs of the FFNN were
used to plot new dilution graphs with a probabilistic interpretation illustrating its practicability. It was concluded that the

FFNN-based classifier could be a useful tool for open stope design in underground mines.

Keywords: open stope mining, dilution graph, stope overbreak, neural network classifier

1. Introduction

pen stope mining is a common mining

method employed in hard rock underground
mining in many countries due to several advantages
[1,2]. One of the distinctive features of open stope
mining is that it is a non-entry mining system,
where relatively large excavations (stopes) are
created after ore extraction. Appropriate stope di-
mensions mostly control the stability of the stope
surfaces, and, if support of the stope walls is
required, cable bolts and backfill are usually used.
This method has the capacity of achieving higher
productivity with lower exposure to unsafe condi-
tions compared to other underground mining
methods. However, unplanned dilution due to the
instability, sloughing, caving, or overbreak of the
hangingwalls and footwalls can inflict high opera-
tional costs, and production delays; it may lead to
safety concerns in some cases [1,3,4]. Overbreak is

referred to as the unplanned volume of unstable
rock, which falls from the stope walls beyond the
design shape. Dilution, on the other hand, is the
amount of overbreak that is removed from the stope
and sent to the processing plant [5]. Dilution can be
divided into two categories: planned and un-
planned. Usually, the planned dilution is considered
unavoidable because the waste rock (with low grade
ore) is often mined with ore. This type of dilution is
included in planned stope dimensions. On the other
hand, unplanned dilution can be avoided or
reduced by controlling the wall sloughing and
overbreak. Factors influencing the unplanned stope
dilution include rock mass structures, in-situ
stresses, irregular wall geometry, undercutting
walls, blast hole deviation, stope life, and the num-
ber of blasts used in the stope extraction [2].
A deeper understanding of how these factors are
related to dilution can be useful to estimate the ex-
pected amount of overbreak and dilution for
adequate production planning and scheduling.
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Unplanned dilution can be evaluated using
empirical charts and other design tools, such as
predictive models and sound engineering judg-
ment. The literature reveals a wide variety of
methods capable of assessing open stope dilution
within the context of open stope design. These
include numerical modelling [3,6—8], analytical
methods [9], back analysis of stope monitoring data
[10], and empirical dilution graphs [11—-13]. Among
these methods, the dilution graphs, which were
elaborated on the stability graph method [14], are
commonly used because of their practical relevance,
simplicity, and flexibility [15—17]. The equivalent
linear overbreak or slough (ELOS) parameter was
introduced to estimate the dilution in the stope
walls [5,13]. The ELOS graphs are practical design
tools that can be used to select the dimension of the
stopes that allow for an acceptable level of dilution.

Nevertheless, these graphs have several draw-
backs similar to any other empirical method. They
often face the problem of generalization and tend to
be overly site-specific. Another challenge with the
stability graph approach is how to determine the
design lines reliably even though binary classifica-
tion methods, such as logistic regression techniques,
have been used for this purpose [18]. To overcome
some of the limitations of the stability graph
method, Papaioanou and Suorineni [19] attempted
to generalize the dilution graph independent of the
ore body size using the Bayesian discrimination
method. Nevertheless, the results did not indicate
any substantial improvement in prediction and
generalization capabilities. These examples clearly
demonstrate the urgent need for the improvement
of the existing empirical design tools to ensure the
profitability and sustainability of the operations,
especially in today’s mining industry, where most
mines tend to go deeper across the world due to the
depletion of shallow minerals.

In this regard, the quest for enhancing the open
stope design tools has led several researchers to
explore alternative tools such as soft computing tech-
niques. For example, Jang et al. [20] proposed a general
model for unplanned dilution and ore loss prediction
in long-hole stoping mines using a multi-layer Artifi-
cial Neural Network (ANN). The correlation coeffi-
cient of the proposed model for the three mines
involved in their study ranged between 0.66 and 0.72.
This fair prediction capability was probably due to the
quality and range of the data as they came from
various mines, different operating conditions, and
where mines were mixed together. Zhao and Niu [15]
predicted the ELOS based on four input parameters
and multi-layer ANN. Their study showed that better
prediction accuracy can be obtained when the model

is calibrated to a specific mine site which corroborates
the need to consider the site specificity and avoid
generalizing in open stope design [21]. However, Zhao
and Niu [15] have used a linear activation function in
the output layer, which shows that the ELOS model
was not a classifier. A few other studies have shown
the adequacy and the usefulness of expert systems and
decision making algorithms to estimate unplanned
dilution. These include a decision support system of
unplanned dilution and ore-loss in underground
stoping operations using a neuro-fuzzy system [22]; an
unplanned dilution index through rating a new clas-
sification system for cut-and-fill stoping method [23];
a knowledge-based system for assessing unplanned
dilution in open stopes [24]. In addition, ANN can be
used to quantify the effect of the parameter contrib-
uting to unplanned dilution in underground stoping
mines by examining the connection weights of input to
hidden layers [16]. More recently, Bazarbay and
Adoko [25] illustrated the inadequacy of using ANN as
a fitting function for the prediction of the unplanned
dilution and suggested that ANN can be used as
a classifier. However, the context of their study was
limited to a comparative study based on data compiled
from various sources.

While the literature indicates a number of studies
in which machine learning was used to principally
predict the amount of unplanned dilution, as
mentioned previously, the implementations of ANN
as classifiers to estimate the unplanned dilution
levels, however, are surprisingly very limited.
Perhaps, many researchers overlook the advantages
of simple ANN classifiers due to advancements in
soft computing. Yet the majority of rock engineering
problems, such as unplanned dilution, should be
regarded as classification problems since rock mass
classification, and other different forms of ratings
and decision makings are involved [26]. Unlike
ANN as predictive models, the outputs of ANN
classifiers can be conveniently used to plot design
charts which are in practice more useful in mine
design [11,27]. Therefore, this paper makes use of
a multi-layer ANN classifier to establish unplanned
dilution graphs that can be employed to design
open stopes in underground mines, with the ulti-
mate goal of bridging the gap outlined above and
within the scope of the empirical stability graph
design approach.

2. Methods
2.1. An overview of the stability graph

The stability graph, also known as Mathew’s sta-
bility graph, is an open stope design tool that was
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proposed by Mathews et al. [14]. The method was
initially established on a relatively small number of
stope wall stability cases from Canadian mines.
Since then it, has been used at various mine sites
around the world. Over the past three decades,
significant amounts of new data were collected by
various researchers, allowing further enhancement
of the stability chart [12,18]. As a result, several
modifications were made to the method for calcu-
lating the governing factors of the stability number,
which have led to the establishment of several var-
iants of the stability chart [28].

The stability graph hypothesizes that the compe-
tency of the surrounding rock mass could be related
to the size of an excavation surface and, therefore,
provides an approximation of the critical di-
mensions of the stopes that will guarantee a desir-
able design performance (i.e., stability or dilution). It
is an empirical graph representing a series of stope
surfaces with their corresponding stability condi-
tions. Fig. la—b illustrate the stability graph
(extended stability graph), and the dilution graph,
respectively. In these graphs, a 2-D representation is
adopted by plotting the modified stability number
N’ (or the original stability number N) vs, the Hy-
draulic Radius (HR). N’ is determined according to
Eq. (1) as follows:

N'=QABC (1)

where: A is the rock stress adjustment factor, B is the
joint orientation adjustment factor, and C is the
gravity adjustment factor. Q' represents the rock
mass quality and is defined as per Eq. (2):
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In Eq. (2), the parameters are the well-known
inputs of the Q-system for rock mass classification
[29]: RQD, J,, ], and ], stand for the rock quality
designation, joint set number, joint roughness
number, and joint alteration number, respectively.
The adjustment factors A, B and C in Eq. (1) are
determined using design charts [12,18,28].
Factor A reflects the effects of induced stresses on
the stope surface; factor B accounts for the joint ef-
fect that may cause instability depending on the
orientations; and the gravity factor C reflects the
mode of failure, which may be in the form of gravity
fall, sliding, or slabbing [30].

The variable HR, which reflects the geometry of
the stope face, is defined by dividing the area of
a stope face over its perimeter (Eq. (3)):

2
HR— Area(m )
Perimeter(m)

(3)

2.2. A brief overview of Artificial Neural Network
(ANN)-classifiers

An ANN is a form of mathematical representation
where processing units known as neurons are
interconnected in a way that they are capable to
learn from sample data presented to them similar to
the human brain’s cognitive processes [31]. Their
purpose is to “intelligently” recognize any associa-
tion between data, such as, correlations and pat-
terns. The neurons are compactly interconnected in
a configuration that makes large parallel computa-
tions possible. An input vector is processed in each
neuron n, and the corresponding output is deter-
mined according to Eq. (4):

b)
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5 100
£ Stable @os?®
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Fig. 1. (a) Stability graph using the extended stability database [18]; (b) Dilution graph showing the stope design lines [5].
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y=F(Y wei+0) @

where: x;, w;, 0 and f are the i input, i weight, the
bias of the neuron and the activation function of that
neuron, respectively [32].

In general, a network comprises a minimum of
three layers of processing units (input, hidden, and
output layer), as sketched in Fig. 2. The first layer
(input layer) only handles the input data without
processing. The next layers are known as hidden
layers. The last layer denotes the output layer,
where the network output is processed, and layers’
outputs can be explicitly determined. The network
output is computed using initial weights and biases
based on a par of dataset (inputs and targets vec-
tors). Subsequently, the weights and biases are
adjusted through an algorithm, where the output
and the target values are constantly compared until
the network outputs meet the targets within an
acceptable error. Typically, the acceptable error in-
dicator is the sum of squared errors, which are
minimized through learning algorithms, such as the
Levenberg-Marquardt algorithm. In the network
structure, several types of ANNs can be employed,
including back-propagation, counter-propagation,
feedforward, and dynamic networks. Depending on
the network structure, they can be used to solve
different kinds of problems, such as data fitting,
pattern recognition, classification, clustering, and
time series [33]. When ANNSs are employed as
a classifier, several network configurations can be
used in accordance with the data patterns to classify
the parameter under consideration (e.g., stope
dilution). For instance, commonly used classifiers

Output layer, K

Hidden layer, Jp 91(

Hidden layer, Jy 6 @

Input layer, / 0]1

17 i\

Input Xi (i=1,...,n)

Fig. 2. A feed-forward neural network schematic diagram.

are the one-against-all, weighted one-against-all,
binary-coded, parallel-structured, weighted paral-
lel-structured, and tree-structured [34].

2.3. Data description

For this study, stope dilution data were collected
from the Ridder-Sokolny mine, located in East
Kazakhstan. Owned by Kazzinc Corporation, the
mine currently produces 1.6 million tons of ore
annually with an average gold grade of 2.0 g/ton
[35]. A number of mining methods are utilized at
the Ridder-Sokolny mine depending on the ore
body morphology and thickness, such as sublevel
caving, cut-and-fill stoping, and sublevel stoping.
The rock mass quality of the area of study varies
from poor to very good. The compiled data consists
of the rock mass properties (e.g., RQD, joint set
number ], joint roughness coefficient ], joint
alteration number J,), stope geometry, and the
stope reconciliation data. This allowed determining
the modified stability number (N'), hydraulic radius
(HR), and the overbreak percentage. All N' and HR
values were determined from mine plans and final
stope shapes from stope surveying data (cavity
monitoring surveying, CMS), mining plans, and
geotechnical reports. The stope overbreak and
dilution were determined using comparison be-
tween the initially designed stope sizes with the
final resultant stope sizes, and were measured by
CMS with the aid of a mine design software,
Datamine Studio RM®.

The database contains 147 case histories of stope
walls. The N’ values range from 10.8 to 46.4, and the
HR values vary from 1.7 to 12.3 m. The same dilution
data (147 data points in total)used previously were
categorized into three groups: minor dilution,
moderate dilution, and major dilution according to
the percentage of overbreak. Thresholds of 20 and
50% overbreak were used for this purpose based on
the acceptable dilution in the Ridder-Sokolny mine
and the requirement to keep statistical consistency
of the data. This led to 60, 44, and 43 cases of minor
(less than 20% overbreak), moderate (between 20
and 50%), and major (more than 50%) cases of
dilution, respectively. A distribution (pair plot) of
the dataset is shown in Fig. 3, while the coefficients
of correlation of the dilution parameters are sum-
marized in Table 1, where weak linear correlations
can be seen. Fig. 3 represents pairwise relationships
of the main variables in the dataset, i.e. dilution, HR
and N On the diagonal, a univariate distribution
plot is given to highlight the marginal distribution of
each of these variables.
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Fig. 3. Pair plot of the main variables of the data used in the study.

3. Results
3.1. The stability graph

In this section, the stability graphs are plotted
using the compiled database following the meth-
odological procedure described in Section 2.1 for
a qualitative assessment of dilution. In Fig. 4a, the
data points of the current study were superimposed
on the stability graph in use in the Ridder-Sokolny
mine, where the boundaries between stable and
caved zones were roughly established based on
engineering judgement. In Fig. 4b the data points
were superimposed on the extended stability graph;
the boundaries of the zones were determined
objectively using logistic regression [18]. It can be
seen from these graphs that almost all of the data

Table 1. The correlation coefficients of the dilution parameters.

Parameters N HR Dilution (%)
N 1

HR 0.05 1 1

Dilution (%) —0.07 0.27 1

points fall within the stable zone. This means dilu-
tion is unlikely to be linked to stope wall instability
and sloughing. Next, the quantitative stability graph
or ELOS graph [5,13] corresponding to the dilution
database was produced, as shown in Fig. 4c. The
graph shows that the expected dilution is less than
0.5m. On the other hand, higher dilution levels
were observed in the database (see Fig. 4). The
observed stopes had been experiencing unplanned
dilution at varying rates; meanwhile, the stability
graph-based dilution graphs predicted very limited
dilution. Therefore, it is deduced that ELOS
methods together with Mathew’s stability graphs
are not good predictors of unplanned dilution in the
Ridder-Sokolny mine. Thus, it becomes necessary to
explore other ways of predicting unplanned
dilution.

3.2. Establishing the ANN-classifier

3.2.1. Input data description and network optimization
The ANN-classifier is developed on the basis of

the same dilution data (147 data points in total) used

in Section 3.1. Matlab software was used for the
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Ridder-Sokolny data points on the extended stability graph; (c) Ridder-
Sokolny data points superimposed on the ELOS graph.

computation. The input parameters for the neural
network are stope geometry, defined by the hy-
draulic radius (HR), and the rock mass character-
istics, represented by the Modified Stability
Number (N'). The target is the overbreak category,
which also represents the level of dilution. The data
were randomly split into three groups: training
(70%), validation (15%), and testing (15%) datasets.
These datasets sizes were found adequate for the
modelling [31]. The target is represented by specific
vectors as follows: (1, 0, 0); (0, 1, 0); and (0, 0, 1),
which represent minor, moderate, and major

overbreak, respectively. These vectors are applied
to satisfy the conditions of having the n x n identify
matrix (n is the number of classes) representing the
targets in pattern recognition networks. A series of
experiments were conducted using a trial-and-
error principle until the optimum network was
found. The best performance was obtained for
a two-hidden layers feed-forward neural network
(FENN), which was found to be the optimum
network in the experiments. The hidden layers
have 102 neurons each. The performance of the
network was evaluated using the cross-entropy
algorithm. This algorithm determines the network
performance constrained by the targets, outputs,
and performance weights with a measure that
heavily penalizes extremely inaccurate outputs, i.e.,
when targets and outputs are too far from each
other. Conversely, a very little penalty is consid-
ered for fairly correct classifications. Therefore,
reaching a minimum cross-entropy error leads to
good classifiers. Fig. 5 displays the performance of
the optimum network configuration with respect to
the validation dataset. The cross-entropy error
reached a minimum value of 0.0759 at epoch 21 (an
epoch represents a completed iteration or cycle of
the training procedure). The activation functions,
which were used, included the logistic sigmoid
(Logsig) function in the hidden layers and the
softmax function in the output layer. They are
defined according to Egs. (5) and (6):

log sig(n) = 5
gsign) =1~ )
71
soft max(n) = 6
fi max(n) =~ (6)
Best Validation Performance is 0.075934 at epoch 21
100, T T T L - I
—Train i
A Validation
—Test

=
o,

Cross-Entropy (crossentropy)

=
o,
]
T
L

10 15 20 25
27 Epochs

o
ul

Fig. 5. The validation performance (error) graph.
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Eq. (6) indicates that the output values not only
fall within the internal [0,1] but also sum to 1,
allowing probabilistic interpretation. The softmax
activation function is often used in the output layer
of a neural network with the purpose of normalizing
the output of a network to a probability distribution
over predicted output classes. Hence, the outputs of
the FFNN can be considered as the probabilities of
occurrence of stope walls with minor, moderate, and
major dilution in the classification.

3.2.2. Classification results

The confusion matrix representing the dilution
classification is shown in Fig. 6. It reflects the pre-
dictive performance of the classifiers. This matrix
compares the results simulated by the model with
identified target values. On the diagonal, the
correctly predicted values are shown (green cells).
In total, 143 cases out of 147 were correctly pre-
dicted. Only four cases were misclassified. The
confusion values (shown in the blue cells) indicate
the degree of misclassification. The closer to zero is

Training Confusion Matrix

Output Class

Target Class

Test Confusion Matrix

Output Class

Target Class

the confusion value, the better the classification.
Based on the data collected from the Ridder-
Sokolny mine, the confusion values for training,
validation, testing, and all datasets together are 0.0,
4.5, 13.6, and 2.7%, respectively, which indicate
a high degree of accuracy. This classification per-
formance is extremely good. Based on the testing
data, the interpretation of these results (considering
the worst-case scenario) is that if 100 new stope
surfaces from the Ridder mine were to be evaluated
by the proposed FFNN, only 14 stope surfaces
would likely be misclassified. . This performance is
very good compared to the stability graph-based
dilution ELOS as shown in Section 3.1.

3.2.3. Classification performance

The Receiver Operating Characteristics (ROC)
was used to check the quality of the classification.
The ROC charts are plotted in Fig. 7. The ROC uses
a specific value of the output (threshold) to identify
each dilution class [36]. The true positive and true
negative rates are calculated and plotted on the

Validation Confusion Matrix

Output Class

Target Class

All Confusion Matrix

Output Class

Target Class

Fig. 6. Confusion matrix for the datasets.
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Fig. 7. ROC diagrams showing the classification performance.

graph. The ROC curves indicate a better classifica-
tion when they get closer to the left upper corner of
the diagram [37]. When the curve reaches the di-
agonal line in the plot, it indicates a poor classifi-
cation. For each dataset (training, testing, validation,
and whole data), it can be seen that all classes are
classified well, and all curves are located in the
upper left corner. This is in good agreement with
the confusion matrix.

Furthermore, the performance of the classification
was assessed based on the entire dataset through
the performance indices defined in Eqgs. (7)—(9),
namely, the accuracy, sensitivity and specificity:

T, +T,

A = r " 7
cetracy T,+T,+F,+F, @
T,
Sensitivity = —— (8)
T,+F,
T,
Specificity = T +T 9)
n p

where: T, T,, F, and F, represent the true positive,
true negative, false positive, and false negative,
respectively. The computed indices are summarized
in Table 2.

As shown in Table 2, the average accuracy of the
classification is 98%, which indicates that the pro-
posed ANN classifier has excellent prediction
capability.

Table 2. Summary of the classification performance.

Dilution level Accuracy  Sensitivity  Specificity

Minor dilution 0.99 1.00 0.98
(<20% overbreak)

Moderate dilution 0.98 0.95 0.99
(20—50% overbreak)

Major dilution 0.98 0.95 0.99
(>50% overbreak)

Average 0.98 0.97 0.99

3.2.4. Probabilistic dilution graph plots

The network output values were used to plot the
ANN-based dilution graphs. A sample of the
computed output is provided in Table 3. This output
is a vector representing minor, moderate, or major
dilution according to the largest value of its
component. For example, the vector (0.0004, 0,9923,
0.0073) highlighted in bold and shown in Table 3,
defines a moderate case of dilution.

The probability of each dilution category is illus-
trated in Fig. 8a-d. They provide a visualization of
dilution areas with their corresponding probability.
These areas are displayed by probability color code
indicating the zone of minor, moderate, or major
dilution. The minor dilution (Fig. 8a) is plotted on
the stability graph, where N’ and HR relationship is
shown. Yellow-colored zones show the highest
probability of the stope with minor dilution, while
the lowest probability of a particular dilution cate-
gory is colored in red. From Fig. 8a, the minor
dilution with a probability of more than 0.9 corre-
sponds to a zone with HR >7 and N’ < 15, while for
the HR less than 7, minor dilution is likely to occur
regardless of the stability number (N”’). It is noted
that in the range of HR between 5 and 7, an erratic
outcome is observed. Here, the presence of mod-
erate and major dilution can be observed as the
probability of minor dilution drastically changes. In
addition, with high values of HR (HR>7) and low
stability number (N’ < 20), minor dilution is likely to
occur without high ore contamination. Compared
with the conventional dilution graphs, this graph
reflects more details and provides additional infor-
mation, i.e., the dilution level’s probability. The
interpretation of the ANN-based dilution graph is
more straightforward. However, from Fig. 8a—c, it
can also be seen that the stability number (') is not
a good predictor of dilution.

In Fig. 8a-b moderate and major dilution graphs
are illustrated respectively. Similar to Fig. 8a,
a probability code, yellow and green colored zone
indicate potential zones of moderate dilution. Based
on Fig. 8c showing the probabilities of occurrence of
the major dilution class, a zone with high HR and N’
and a zone with low hydraulic radius and low
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Table 3. Selected computed data of dilution categories classification.

Input Overbreak (%) Dilution level Target (vector) Output (vector)

HR (m) N’

9.64 28.36 60.00 Major 0 0 1 0.0000 0.0008 0.9992
2.15 28.40 1.20 Minor 1 0 0 0.9995 0.0005 0.0000
8.26 36.09 42.00 Moderate 0 1 0 0.0004 0.9923 0.0073
3.87 31.96 80.00 Major 0 0 1 0.0000 0.0007 0.9993
3.94 37.12 11.00 Minor 1 0 0 0.9988 0.0012 0.0000
4.76 41.02 38.04 Moderate 0 1 0 0.0003 0.9985 0.0011
3.36 15.47 75.00 Major 0 0 1 0.0000 0.0005 0.9995
4.93 20.62 120.00 Major 0 0 1 0.0000 0.0002 0.9998
3.94 29.90 4.00 Minor 1 0 0 0.9996 0.0004 0.0000
2.05 24.61 8.90 Minor 1 0 0 0.9992 0.0008 0.0000
3.28 25.26 44.00 Moderate 0 1 0 0.9983 0.0017 0.0000
2.94 13.92 21.00 Moderate 0 1 0 0.0978 0.9019 0.0003
2.33 37.12 24.00 Moderate 0 1 0 0.0048 0.9949 0.0004
5.59 28.00 12.00 Minor 1 0 0 0.9993 0.0007 0.0000
5.63 28.08 30.00 Moderate 0 1 0 0.0006 0.9992 0.0002
9.64 30.93 75.00 Major 0 0 1 0.0000 0.0003 0.9997

stability number (colored yellow) show to have
a high dilution of more than 50%. Major dilution
points can also be located in the stable and transi-
tion zones of the conventional stability graph. In
Fig. 8d, the probability distribution of minor dilution
is represented on a 3D graph. The highest proba-
bility of dilution prevails in the red color red, while

(©)

the lowest probability is in blue. This map allows
visualization of how dilution changes in three di-
mensions. The probability map from Fig. 8d pro-
vides an advantage of visualizing dilution at
different points. Minor dilution has a low proba-
bility of occurrence in the stable zone. Occasionally,
no strong dependency of hydraulic radius influence

Minor dilution

(d)

Fig. 8. Probabilistic dilution graphs: (a) Minor dilution; (b) Moderate dilution; (c) Major dilution; (d) 3D minor dilution map.
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on the minor dilution is observed. In the stable zone,
moderate and major dilutions also exist. Similar
maps can be plotted for moderate and major dilu-
tion cases.

4. Discussions

The stability graph approach was used to evaluate
unplanned stope dilution associated with data ob-
tained from the Ridder-Sokolny mine and the re-
sults indicated low dilution levels. However, the
actual recorded dilution level from the mine stope
reconciliations showed high dilution. These results
clearly demonstrated that the stability graph
method is not always adequate for predicting the
dilution level. This led to investigating an alternative
method that could accurately classify and predict
the dilution of stope more consistently through
ANN-based dilution graphs.

As shown in section 4.2.3, the ANN classifier
model indicated very good classification perfor-
mance, 98% of accuracy on average. These results
outperform many of the existing ones, as shown in
Table 4. In that table, two different performance
indices were used. Even though they have different
meanings, they can be used to evaluate the perfor-
mance of the ANN model. R is the coefficient of
correlation between predicted dilution and actual
dilution, which indicate the fitness of the model
while in the classifier models, the accuracy is
calculated using Eq. (7). Based on Table 4, the per-
formance of our model is similar to that of Zhao and
Niu [15]. In both studies, the data came from a single
mine, and high accuracy was obtained, which con-
firms the site specificity of the ANN model. Never-
theless, these models are valid for values of the
input parameters within the data range i.e., the
minimum and maximum values.

Table 4. Performance comparison summary of related study.

Another contribution of this study is its perfor-
mance over other classification methods. Taking
into consideration a few well known works related
to the use of the stability graphs either qualitatively
or quantitatively with different databases across the
world, the percentage of the stope performance
cases correctly classified (classification accuracy or
sensitivity, and discriminability index) commonly
range from 23 to 88%, depending on the source of
the data [18,19,38,39]. In these works, statistical
tools, such as logistic regression and Bayesian
discrimination, were employed to objectively clas-
sify the stope performance data into categorical re-
sponses according to some design lines. Yet, very
high misclassification was observed [19]. In the
current study, there is no need for the use of such
design lines as seen in these previous studies. The
absence of these lines contributed to the improve-
ment of classification accuracy.

The relatively poor to fair accuracy in existing
works is because the method was initially developed
as a non-rigorous method, and a series of simplifi-
cations and assumptions were considered [30].
Several limitations of the stability graph method
have already been highlighted in previous studies
[4,40]. For example, the sliding failure modes in
footwalls, the instabilities caused by tension, com-
plex stope geometries, poor blasting effects, stand-
up time, the effect of nearby faults, and sub-
jectivities in defining the stability graph zones, etc.,
have not been taken into consideration in the sta-
bility graph. Nevertheless, it is evident that incor-
porating the effects of each of these factors into the
stability graph is a daunting task; this would even
defeat the purpose of the method itself, which is its
simplicity. On the other hand, the ANN-based
graph method can incorporate all these effects in the
development of the classifier. For example, although

References Methods Accuracy

Jang et al. [22] Concurrent neuro-fuzzy system; data size = 1067 cases; input parameters R=0.719
include stope geometry, blasting and geology

Jang et al. [20] ANN with one hidden layer; data size =1067 cases; input parameters R =0.66—0.72
include stope geometry, blasting and geology

Zhao and Niu [15] Multi-layer ANN; data size =120 cases; input parameters include stope R=0.98
geometry, blasting and rock mass properties

Mohseni et al. [23] Expert system based on Fuzzy-Delphi analytical hierarchy process; Data R=0.94

size =10 case histories; input parameters include stope geometry, drilling
& blasting, geology and operational parameters

ANN classifier; data size =227 cases; input parameters include stope
geometry and the stability number

Fuzzy inference system; data size =147 cases; input parameters include
stope geometry and the stability number

ANN classifier; data size =147 cases; input parameters include stope
geometry and the stability number

Bazarbay and Adoko [25] 85% using Eq. (7)

Bazarbay and Adoko [24] 84% using Eq. (7)

This study 98% using Eq. (7)
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not provided in this study, an exploratory model of
the classifier was considered, where the stope di-
mensions, the in-situ stress, stope wall orientations,
discontinuity characteristics, and the rock mass
properties were directly used without calculating
HR and N'. In that model, the overall misclassifica-
tion rate (4%) was close to that of this study (2.7%).
This means with this method, many more influ-
encing factors could be considered in the modelling.
In addition, calculating the stability number can
then be omitted, which eliminates the unnecessary
debate about whether the stability number (N) or
the modified stability number (N”) should be used
in the stability graph method, as presented in
a recent study [41]. Furthermore, the results of the
present study also demonstrate that for the database
used in this study, the stability number is not a good
predictor of dilution, and the dilution graph cannot
be generalized as the dilution seems to be associ-
ated with certain values of HR, which are being
dictated by the mean ore width. It is worth
mentioning that although the method appeared to
be useful and relevant to the study area, an exten-
sive database (i.e., sufficiently large data with higher
variability) of various stopes with different geometry
and rock mass properties is still required for further
validation of the method proposed in this study.
This will increase the data range, minimize the in-
fluence of subjective data, and ultimately enhance
the generalization of the classifiers. When new data
become available, the probability maps will be
updated, and the method will be continuously
improved.

5. Conclusions

In this paper, a new dilution graph is proposed. It
was developed based on a feed-forward ANN clas-
sifier consisting of two hidden layers. Unplanned
dilution data collected from the Ridder-Sokolny
mine were used to train, test, and validate the
classifier. The main parameters included the modi-
fied stability number, hydraulic radius, and the
stope overbreak. The level of dilution was catego-
rized into three classes: minor, moderate, and major
dilution, based on stope overbreak. Overall, 97% of
the stope surfaces were correctly classified. These
results show higher predictor capability compared
with those of the conventional stability graph. More
than 97% of the stope dilution data were properly
classified. On the other hand, the results of the
conventional stability graph method showed
inconsistency in assessing the level of dilution in the
Ridder-Sokolny mine. The stopes observed had
been experiencing unplanned dilution at varying

rates, while the stability-based dilution graphs pre-
dicted very limited dilution. This justified the
implementation of the non-conventional ANN-
based dilution graph. It was found that the ANN-
classifier showed merits in assessing the dilution
level. Furthermore, the network output values were
found to be useful in plotting the probabilistic
dilution maps, which are convenient for stope
design and less experienced users of the conven-
tional stability graph charts. This allows for the se-
lection of the dimension of the stopes that would
correspond to the acceptable dilution level in
a probabilistic sense. It was concluded that the
ANN-based dilution graph would be a good tool for
dilution evaluation in the Ridder-Sokolny mine (or
any mine with the same data range).

However, more data (i.e., increasing the data range)
is needed to generalize the methodology as this study
relies on site-specific data. Care must be taken not to
advance overconfidence in a result without recog-
nizing the nature of the information underlying the
strategy. Hence, itis suggested to increase the size and
quality of the dilution database to increase the
method’s generalization capability. The merit of this
study lies in the implementation of an ANN-based
classifier to produce probability contours for the level
of dilution highlighted and color-coded. There is no
need to use any zone delineation for the dilution, as
commonly seen in the conventional method. The
graphs provide a probabilistic interpretation of the
stope dilution, where the uncertainties inherent in the
stope design can be straightforwardly quantified. This
would make the ANN-based classifier a convenient
tool for risk assessment and the optimization of the
open-stope design.
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