Powiadomienia systemowe
- Sesja wygasła!
- Sesja wygasła!
- Sesja wygasła!
- Sesja wygasła!
- Sesja wygasła!
Tytuł artykułu
Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Ultrasound imaging is widely used for breast lesion differentiation. In this paper we propose a neural transfer learning method for breast lesion classification in ultrasound. As reported in several papers, the content and the style of a particular image can be separated with a convolutional neural network. The style, coded by the Gram matrix, can be used to perform neural transfer of artistic style. In this paper we extract the neural style representations of malignant and benign breast lesions using the VGG19 neural network. Next, the Fisher discriminant analysis is used to separate those neural style representations and perform classification. The proposed approach achieves good classification performance (AUC of 0.847). Our method is compared with another transfer learning technique based on extracting pooling layer features (AUC of 0.826). Moreover, we apply the Fisher discriminant analysis to differentiate breast lesions using ultrasound images (AUC of 0.758). Additionally, we extract the eigenimages related to malignant and benign breast lesions and show that these eigenimages present features commonly associated with lesion type, such as contour attributes or shadowing. The proposed techniques may be useful for the researchers interested in ultrasound breast lesion characterization.
Wydawca
Czasopismo
Rocznik
Tom
Strony
684--690
Opis fizyczny
Bibliogr. 26 poz., rys., tab., wykr.
Twórcy
autor
- Department of Ultrasound, Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawińskiego 5b, 02-106 Warsaw, Poland
Bibliografia
- [1] Stewart BW, Wild CP. World Cancer Report 2014; 2014.
- [2] Bott R. ACR BI-RADS Atlas, no. 1; 2014.
- [3] Giger ML, Karssemeijer N, Schnabel JA. Breast image analysis for risk assessment, detection, diagnosis, and treatment of cancer. Annu Rev Biomed Eng 2013;15:327–57.
- [4] Cheng HD, Shan J, Ju W, Guo Y, Zhang L. Automated breast cancer detection and classification using ultrasound images: a survey. Pattern Recognit 2010;43(1):299–317.
- [5] Flores WG, de Albuquerque Pereira WC, Infantosi AFC. Improving classification performance of breast lesions on ultrasonography. Pattern Recognit 2015;48(4):1125–36.
- [6] Bian C, Lee R, Chou Y-H, Cheng J-Z. Boundary regularized convolutional neural network for layer parsing of breast anatomy in automated whole breast ultrasound. International Conference on Medical Image Computing and Computer-Assisted Intervention. Springer; 2017. p. 259–66.
- [7] Cheng J-Z, Chou Y-H, Huang C-S, Chang Y-C, Tiu C-M, Chen K-W, et al. Computer-aided us diagnosis of breast lesions by using cell-based contour grouping. Radiology 2010;255(3):746–54.
- [8] Chou Y-H, Tiu C-M, Hung G-S, Wu S-C, Chang TY, Chiang HK. Stepwise logistic regression analysis of tumor contour features for breast ultrasound diagnosis. Ultrasound Med Biol 2001;27(11):1493–8.
- [9] Chen C-M, Chou Y-H, Han K-C, Hung G-S, Tiu C-M, Chiou H-J, et al. Breast lesions on sonograms: computer-aided diagnosis with nearly setting-independent features and artificial neural networks. Radiology 2003;226(2):504–14.
- [10] Cheng J-Z, Ni D, Chou Y-H, Qin J, Tiu C-M, Chang Y-C, et al. Computer-aided diagnosis with deep learning architecture: applications to breast lesions in US images and pulmonary nodules in CT scans. Sci Rep 2016;6:24454.
- [11] Shin H-C, Roth HR, Gao M, Lu L, Xu Z, Nogues I, et al. Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning. IEEE Trans Med Imaging 2016;35(5):1285–98.
- [12] Litjens G, Kooi T, Bejnordi BE, Setio AAA, Ciompi F, Ghafoorian M, et al. A survey on deep learning in medical image analysis; 2017, arXiv:1702.05747.
- [13] Antropova N, Huynh BQ, Giger ML. A deep feature fusion methodology for breast cancer diagnosis demonstrated on three imaging modality datasets. Med Phys 2017; 44(10):5162–71.
- [14] Han S, Kang H-K, Jeong J-Y, Park M-H, Kim W, Bang W-C, et al. A deep learning framework for supporting the classification of breast lesions in ultrasound images. Phys Med Biol 2017;62(19):7714.
- [15] Belhumeur PN, Hespanha JP, Kriegman DJ. Eigenfaces vs. fisherfaces: recognition using class specific linear projection. IEEE Trans Pattern Anal Mach Intell 1997; 19(7):711–20.
- [16] Gatys LA, Ecker AS, Bethge M. A neural algorithm of artistic style; 2015, arXiv:1508.06576.
- [17] Jing Y, Yang Y, Feng Z, Ye J, Song M. Neural style transfer: a review; 2017, arXiv:1705.04058.
- [18] Piotrzkowska-Wróblewska H, Dobruch-Sobczak K, Byra M, Nowicki A. Open access database of raw ultrasonic signals acquired from malignant and benign breast lesions. Med Phys 2017;44(11):6105–9.
- [19] Byra M, Nowicki A, Wróblewska-Piotrzkowska H, Dobruch-Sobczak K. Classification of breast lesions using segmented quantitative ultrasound maps of homodyned k distribution parameters. Med Phys 2016;43(10):5561–9.
- [20] Dobruch-Sobczak K, Piotrzkowska-Wróblewska H, Roszkowska-Purska K, Nowicki A, Jakubowski W. Usefulness of combined BI-RADS analysis and Nakagami statistics of ultrasound echoes in the diagnosis of breast lesions. Clin Radiol 2017;72(4). 339.e7.
- [21] Deng J, Dong W, Socher R, Li L-J, Li K, Fei-Fei L. ImageNet: a large-scale hierarchical image database. IEEE Conference on Computer Vision and Pattern Recognition, 2009. CVPR 2009. IEEE; 2009. p. 248–55.
- [22] Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition; 2014, arXiv:1409.1556.
- [23] Chollet. Others, Keras; 2015, https://github.com/fchollet/keras.
- [24] Fawcett T. An introduction to ROC analysis. Pattern Recognit Lett 2006;27(8):861–74.
- [25] DeLong ER, DeLong DM, Clarke-Pearson DL. Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics 1988;837–45.
- [26] Landini L, Sarnelli R. Evaluation of the attenuation coefficients in normal and pathological breast tissue. Med Biol Eng Comput 1986;24(3):243–7.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-10cf9a6c-f58a-493d-91a9-202868fc0c20