PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Nowe podejście do oceny właściwości elektroprzewodzących włókienniczych struktur anizotropowych

Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
PL
Abstrakty
PL
Elektroprzewodzące wyroby włókiennicze stanowią grupę nowoczesnych tekstyliów. Dobre przewodnictwo elektryczne materiału włókienniczego połączone z jego giętkością, elastycznością i komfortem odczuwanym przez użytkownika przyczynia się do tego, że są one stosowane w wielu dziedzinach życia - w ochronie zdrowia i medycynie, odzieży ochronnej i ratownictwie, łączności, sporcie, rozrywce i wielu innych. Możliwość integracji elementów elektronicznych z materiałami tekstylnymi przyczyniła się do rozwoju tekstroniki - wiedzy łączącej technologie włókiennicze z elektronicznymi i informatycznymi. Potencjalne możliwości aplikacyjne wyrobów włókienniczych, jako elementów w systemach tekstronicznych, wymagają oceny ich właściwości elektroprzewodzących. W większości tekstylia charakteryzują się anizotropią właściwości elektroprzewodzących ze względu na złożoną, niejednorodną strukturę. W pracy zaproponowano sposób rozwiązania problemu oceny anizotropii właściwości elektroprzewodzących wyrobów włókienniczych. W ramach prowadzonych badań naukowych opracowano koncepcję analizy anizotropowych struktur tkanych w oparciu o ideę metody Van der Pauwa. Na tej podstawie zbudowano stanowisko pomiarowe służące do wielowariantowych badań próbek. Przewidziano następujące warianty rozmieszczenia elektrod na powierzchni próbki: L1 - długość boku kwadratu równa 60 mm; L2 - długość boku kwadratu równa 40 mm; L3 - długość boku kwadratu równa 20 mm. Zaproponowano oryginalne narzędzie umożliwiające ocenę anizotropii właściwości elektroprzewodzących tekstyliów, w którym wykorzystano tzw. funkcję anizotropii. Funkcja ta pozwala określić przebieg zmian wartości rezystancji próbki tekstylnej w zależności od kierunku jej badania. Umożliwia również wykrycie najkorzystniejszych kierunków na próbce z punktu widzenia przewodnictwa prądu elektrycznego. Wyróżniono dwa warianty związane z kierunkami badania płaskiej anizotropii właściwości elektroprzewodzących tkanin: W1 - przyjęty kierunek badania 0°; W2 - przyjęty kierunek badania 90°. Stwierdzono, że największe wartości rezystancji tkanin wystąpiły w wariancie W1, tzn. wówczas, gdy linia łącząca elektrody napięciowe jest równoległa do nitek osnowy o rezystancji liniowej większej niż rezystancja liniowa nitek wątku. Natomiast najmniejsze wartości rezystancji tkanin wystąpiły w wariancie W2, tzn. wówczas, gdy linia łącząca elektrody napięciowe jest równoległa do nitek wątku. Funkcja anizotropii daje możliwość stwierdzenia wpływu biegunowości napięcia doprowadzonego do elektrod prądowych na wyniki pomiarów rezystancji. Ilościowa ocena płaskiej anizotropii właściwości elektroprzewodzących tkanin została przeprowadzona na podstawie wskaźnika anizotropii. Największą wartość wskaźnika uzyskano dla tkaniny charakteryzującej się stosunkowo cienkimi nitkami zarówno osnowy jak i wątku. Najmniejszą wartość wskaźnika uzyskano dla tkaniny złożonej ze stosunkowo grubych nitek obu systemów. Zakres prowadzonych prac obejmował również szczegółową analizę założeń metody Van der Pauwa pod kątem możliwości jej stosowania do obiektów włókienniczych - wyznaczenia rezystancji powierzchniowej tkanin elektroprzewodzących. Zaproponowano kryterium oceny struktury tkanej w aspekcie występowania cech struktury Van der Pauwa. Kryterium to obejmuje trzy warunki wymagające sprawdzenia: geometria próbki, spójność struktury, homogeniczność struktury. W przypadku badanych tkanin wszystkie warunki tego kryterium zostały spełnione. Stwierdzono, że tkaniny elektroprzewodzące, przyjęte do badań posiadają cechy struktury Van der Pauwa. W prowadzonych pracach badawczych zwrócono uwagę na wybór elektrod przeznaczonych do pomiaru rezystancji próbki. W szczególności skupiono się na doborze powierzchni styku elektrody do badanego podłoża włóknistego. Wybrano najmniejszą z możliwych powierzchni styku elektrody z powierzchnią próbki przyjmując założenie, że pokrywa ona jeden raport tkaniny. Opracowano metodykę badania tkanin pozwalającą określić ich rezystancję powierzchniową w sytuacji, gdy elektrody znajdują się w pewnej niezerowej odległości od jej brzegu. Opracowana koncepcja została zrealizowana na stanowisku pomiarowym przeznaczonym do wielowariantowych badań próbek. Zaproponowano określenie rezystancji powierzchniowej tkanin, charakteryzujących się anizotropią właściwości elektroprzewodzących, z użyciem metody Van der Pauwa. W oparciu o równanie Van der Pauwa, rozszerzone na przypadek próbek anizotropowych, obliczono rezystancje powierzchniowe tkanin. Rezystancje te znajdują się w zakresie od 0,0135 Ω do 0,2420 Ω, co świadczy o ich dobrych właściwościach elektroprzewodzących. Wyniki prac badawczych pozwoliły pozytywnie zweryfikować postawione tezy. Zatem stwierdza się, że: właściwości elektroprzewodzące płaskich wyrobów włókienniczych, w szczególności tkanin, można opisać za pomocą funkcji anizotropii; metoda Van der Pauwa umożliwia określenie rezystancji powierzchniowej tkanin z tym, że stosowanie metody do obiektów włókienniczych wymaga stwierdzenia, na ile cechy struktury Van der Pauwa są w nich odwzorowane; metoda Monte Carlo umożliwia analizę niepewności pomiaru rezystancji powierzchniowej otrzymanej z użyciem metody Van der Pauwa.
EN
Flat textile products have a complex, heterogeneous structure. The arrangement of fibers and yarns in the structure forms layout of empty spaces with a relatively small size, compared to the size of the characteristic dimension of the product. Consequently, the vast majority of textiles are characterized by anisotropy of electroconductive properties. These properties depend on the interlaced yarns and their electroconductive properties. The evaluation of these properties is important from the point of view of the destination of textile products, particularly as a part of the textronic system. Research of planar anisotropy is intended to provide relevant information on the tested object. The problem of assessing the anisotropy of electroconductive properties of woven fabric structures was solved in the monography. Methodology of measurement takes into account the entire surface of a sample of the flat textile product. Resistance is determined in many directions φ, which gives an accurate view of changes in the electroconductive properties of anisotropic textile structures. Curve of anisotropy is obtained in this way. On the basis of the quotient Rmin/Rmax the occurrence of a flat anisotropy of the sample is found. It is proposed preparation the two curves of anisotropy for cases P1 and P2 connected with the polarity of the voltage supplied to the current electrodes. Thanks to them, it is possible to determine the effect of the polarity of the voltage on the resistance value of anisotropic textile structure. The electroconductive properties of woven fabrics are characterized by values of quotient Rmin/Rmax contained in the intervals: [0.45; 0.70] - case P1 and [0.32; 0.69] - case P2. The influence of the polarity of the voltage supplied to the current electrodes on the resistance values of fabrics signed as T4 and T7 (the assumed significance level was 0.05). The obtained research results allow to detect the most favorable directions on the fabric sample from the point of view of electric current flow. The ratio At is a measure of the intensity of occurrence of flat anisotropy of the fabric electroconductive properties. The average flat anisotropy ratio At of the woven fabrics is in the range of [7.3; 21.3]%. The largest value of the ratio was obtained for the woven fabric signed as T4, the smallest one - for fabric signed as T7. With a strong anisotropy, when the ratio reaches a significant value, the resistance of the sample, measured in certain directions, is characterized by large dispersion. Special attention should be paid to the fact that the designated anisotropy functions are characteristic to the samples of a specified thickness and planar dimensions. By examining textile structures of other planar dimensions, for example preparing a larger sample, other resistance values are expected. From this point of view, the assessment should be conducted on the subject of target geometries. It is proposed to determine the woven fabrics surface resistance using Van der Pauw method and the evaluation of its uncertainty using a Monte Carlo simulation. The received surface resistance values of the tested fabrics are in the range from 0.0135 Ω to 0,2420 Ω, taking into account case P1. By changing the polarity of the voltage supplied to the current electrodes the surface resistance decreased by 24% for the fabric signed as T4, and by 11% - for the fabric signed as T7. The conducted research allowed to verify the formulated hypothesis. It means that: electroconductive properties of the flat textile products, especially woven fabrics, can be described by a function of anisotropy; Van der Pauw method allows to determine a surface resistance of woven fabrics, except that using the method to textile objects requires confirmation to what extent the features of Van der Pauw structures are projected into them; Monte Carlo method allows the analysis of measurement uncertainty of the obtained surface resistance using Van der Pauw method. The original achievement is a tool developed to assess the anisotropy of electrically conductive properties of flat textile products based on the anisotropy function. Detailed analysis of the assumptions of Van der Pauw method for the possibility of its application to anisotropic textile structures and, consequently, the determination of the surface resistance of woven fabrics was conducted. The criterion for assessing the woven fabric structure, in terms of the occurrence of the features of Van der Pauw structure, was proposed. Next, attention was paid to the choice of electrodes for measuring the sample resistance. In particular, the work was focused on the selection of the contact area of the electrode to the tested textile substrate. The unique tool for determination of fabric surface resistance, in case of contacts distant from the sample edge, was developed. The original solution is the use of Monte Carlo method to evaluate the measurement uncertainty of surface resistance of anisotropic woven fabric structures. The analysis of the structure of electrically conductive sample may be that it hasn’t all the features of Van der Pauw structure. In this case of textile products in which the length to width ratio of the electrically conductive part of the material is at least 10:1, it is proposed to use four strip electrodes according to the draft of the standard TC 248 WI 00248533 (E). Group of such products, in particular, are woven, embroidered, printed and sputtered conductive paths. Determining the method of evaluating the electroconductive properties of flat textile products requires further research, what is confirmed in the undertaken works by the European Committee for Standardization. The monography doesn’t contain solution to the global problem of measuring the surface resistance of electrically conductive flat textile products. Nevertheless, the scope of research presented in the monography is important for the further development of textiles. Elaborations included in the monograph can be used in science. The measurement and statistical methods, presented in the work, will allow to gain knowledge of specialized textile materials, essential in modern and future applications of these materials, in particular, as the elements of textronic systems. As a result of the conducted research the following conclusions were formulated. 1. The anisotropy function allows to determine the changes of the resistance values of the textile sample depending on the testing direction. It allows to detect the most favorable directions on the sample surface from the point of view of conduction of electric current. In addition, it shall make it possible to tell whether the polarity of the voltage supplied to the current electrodes affects the sample resistance results. 2. The largest resistance values occurred when four electrodes are connected according to variant W1 corresponding to the direction φ = 0°. In this situation, a line connecting the voltage electrodes is parallel to the warp yarns which have the linear resistance greater than the linear resistance of the weft yarns. The smallest resistance values occurred when four electrodes were connected according to variant W2 corresponding to the direction φ = 90°. In this situation, a line connecting the voltage electrodes is parallel to the weft yarns which have linear resistance less than the linear resistance of the warp yarns. 3. Anisotropy ratio At enables an overall evaluation of the anisotropy of electrically conductive properties of textile structures. Detailed information is provided by the function of anisotropy. 4. In the assessment of the structure of the electrically conductive woven fabrics, based on the developed criterion, it was stated that the structure is typical to that used by van der Pauw. 5. The surface resistance of woven fabrics, characterized by anisotropy of electroconductive properties, can be determined using Van der Pauw method. 6. Monte Carlo method can be applied in the assessment of the measurement of uncertainty of surface resistance, implied by Van der Pauw equation. The method enables obtaining an estimate of the surface resistance, the standard deviation associated with this estimate and the coverage interval corresponding to a specified coverage probability p = 0.95. 7. Resistive model allows the analysis of the electroconductive properties of woven fabric structure assuming that the yarns are ideal resistors.
Rocznik
Tom
Strony
1--124
Opis fizyczny
Bibliogr. 225 poz.
Twórcy
autor
  • Politechnika Łódzka. Zakład Odzieżownictwa i Tekstroniki
Bibliografia
  • AATCC 76. Electrical resistivity of fabrics. American Association of Textile Chemists and Colorists, Research Triangle Park, 2011.
  • Alsina M., Escudero F., Margalef J., Cambra V., Gisbert J., 2007, Detection of the deformation of an intelligent textile in a specific point, Sensors, Vol. 7, No. 6, p. 921-931.
  • Andrysiak J., Sikorski K., Frydrych I., 2012, Investigation of electro-conductive yarns used in knitted heating elements, chapter in ‘Innovations in clothing technology & measurement techniques’, ed. by G. Bartkowiak, I. Frydrych, M. Pawłowa, Technical University of Lodz Press, Warszawa, p. 171-188.
  • Aniołczyk H., Koprowska J., Mamrot P., Lichawska J., 2004, Application of electrically conductive textiles as electromagnetic shields in physiotherapy, Fibres and Textiles in Eastern Europe, Vol. 12, No. 4(48), p. 47-50.
  • Application Note, 2012, Overview of two-wire and four wire (Kelvin) resistance measurements, Application Note Series, No. 3176, Keithley Instruments Inc., USA.
  • APS, 1999, Fundamentals of contact resistance, Part I - Contact theory, Advanced Probing Systems, Inc. Technical Bulletin, Boulder.
  • Arendarski J., 2003, Niepewność pomiarów, Oficyna Wydawnicza Politechniki Warszawskiej, Warszawa.
  • Asanovic K.A., Mihajlidi T.A., Milosavljevic S.V., Cerovic D.D., Dojcilovic J.R., 2007, Investigation of the electrical behavior of some textile materials, Journal of Electrostatics, Vol. 65, No. 3, p. 162-167.
  • ASTM D257. Standard test methods for DC resistance or conductance of insulating materials. ASTM International, West Conshohocken, 2007.
  • ASTM F76. Standard test methods for measuring resistivity and hall coefficient and determining hall mobility in single-crystal semiconductors. ASTM International, West Conshohocken, 2008.
  • ASTM F390. Standard test method for sheet resistance of thin metallic films with a collinear four-probe array. ASTM International, West Conshohocken, 2011.
  • Ašmontas S., Kleiza J., Kleiza V., 2008, A method for measuring the specific electrical conductivity of an anisotropically conductive medium, Acta Physica Polonica A, Vol. 113, No. 6, p. 1559-1569.
  • Atkins P.W., 2001, Chemia fizyczna, PWN, Warszawa.
  • Azoulay J., 1988, Anisotropy in electric properties of fabrics containing new conductive fibers, IEEE Transactions on Electrical Insulation, Vol. 23, No. 3, p. 383-386.
  • Åkerfeldt M., Strååt M., Walkenström P., 2013, Influence of coating parameters on textile and electrical properties of a poly(3,4-ethylene dioxythiophene):poly(styrene sulfonate)/polyurethane-coated textile, Textile Research Journal, Vol. 83, No. 20, p. 2164-2176.
  • Bae J., Hong K.H., 2013, Electrical properties of conductive fabrics for operating capacitive touch screen displays, Textile Research Journal, Vol. 83, No. 4, p. 329-336.
  • Bal K., Kothari V.K., 2009, Measurement of dielectric properties of textile materials and their applications, Indian Journal of Fibre and Textile Research, Vol. 34, No. 2, p. 191-199.
  • Banabic D., 2010, Sheet metal forming processes, Springer, Heidelberg.
  • Banaszczyk J., De Mey G., Schwarz A., Van Langenhove L., 2007, Current distribution modeling in electroconductive textiles, Proc. 14th Int. Conf. Mixed Design of Integrated Circuits and Systems, Ciechocinek, Poland, June 21-23.
  • Banaszczyk J., 2010, Theoretical and experimental investigation of thermal and electrical properties of electroconductive fabrics, Ph.D. Thesis, Ghent University, Gent.
  • Banaszczyk J., Anca A., De Mey G., 2009a, Infrared thermography of electroconductive woven textiles, Proc. Int. Conf. on Quantitative InfraRed Thermography, Krakow, Poland, July 2-5.
  • Banaszczyk J., De Mey G., Schwarz A., Van Langenhove L., 2009b, Current distribution modeling in electroconductive fabrics, Fibres and Textiles in Eastern Europe, Vol. 17, No. 2(73), p. 28-33.
  • Banaszczyk J., Schwarz A., De Mey G., Van Langenhove L., 2010, The Van der Pauw method for sheet resistance measurements of polypyrrole-coated para-aramide woven fabrics, Journal of Applied Polymer Science, Vol. 117, No. 5, p. 2553-2558.
  • Bartkowiak G., 2010, Kierunki rozwoju odzieży inteligentnej, Bezpieczeństwo Pracy, Nr 01, s. 18-20.
  • Beckmann L., Kim S., Leonhardt S., 2008, Characterization of textile electrodes for bioimpedance spectroscopy, Proc. Int. Scientific Conf. Smart Textiles - Technology and Design, Borås, Sweden, June 2-3, p. 79-83.
  • Bendkowska W., 2002, Tekstylia inteligentne - przegląd zastosowań. Część II: Tekstylia elektroprzewodzące i tekstylia zintegrowane z mikrosystemami elektronicznymi, Przegląd Włókienniczy - Włókno Odzież Skóra, Nr 9, s. 16-19.
  • Bidoki S.M., McGorman D., Lewis D.M., Clark M., Horler G., Miles R.E., 2005, Ink-jet printing of conductive patterns on textile fabrics, AATCC Review, Vol. 5, No. 6, p. 11-14.
  • Bierwagen O., Ive T., Van de Walle Ch.G., Speck J.S., 2008, Causes of incorrect carrier-type identification in van der Pauw-Hall measurements, Applied Physics Letters, Vol. 93, No. 24, p. 242108-1 - 242108-3.
  • Bonderover E., Wagner S., 2004, A woven inverter circiut for e-textile applications, IEEE Electron Device Letters, Vol. 25, No. 5, p. 295-297.
  • Boyer L., 2001, Contact resistance calculations: Generalizations of Greenwood’s formula including interface films, IEEE Transactions on Components and Packaging Technologies, Vol. 24, No. 1, p. 50-58.
  • Braddock S., O’Mahony M., 2005, Techno textiles: Revolutionary fabrics for fashion and design, Thames & Hudson, London.
  • Brzeziński S., Rybicki T., Karbownik I., Malinowska G., Rybicki E., Szugajew L., Lao M., Śledzińska K., 2009, Textile multi-layer systems for protection against electromagnetic radiation, Fibres and Textiles in Eastern Europe, Vol. 17, No. 2(73), p. 66-71.
  • BS 6233. Methods of test for volume resistivity and surface resistivity of solid electrical insulating materials. British Standards Institution, 1982.
  • BS 6524. Method for determination of the surface resistivity of a textile fabric. British Standards Institution, 1984.
  • Burns M.J., 2000, Quick & dirty review of resistivity measurement techniques, Final Report on U.S. Government Contract “MiniCluster tool for mesoscopic conformal integrated electronics (MICE)”.
  • Calvert P., Patra P., Lo T-C., Chen Ch.H., Sawhney A., Agrawal A., 2007, Piezorezistive sensors for smart textiles, International Society for Optical Engineering, Vol. 6524, p. 65241I-1-65241I-8.
  • Canaves Jr. M., Pompéia P.J., 2006, Uncertainty of the density of moist air: Gum x Monte Carlo, Brazilian Archives of Biology and Technology, Vol. 49, p. 87-95.
  • Carpi F., De Rossi D., 2005, Electroactive polymer based devices for e-textiles in biomedicine, IEEE Transactions on Information Technology in Biomedicine, Vol. 9, No. 3, p. 295-318.
  • Castano L.M., Flatau A.B., 2014, Smart fabric sensors and e-textile technologies: a review, Smart Materials and Structures, Vol. 23, No. 5, p. 1-27.
  • CEN/TR 16298. Textiles and textile products - Smart textiles - Definitions, categorisation, applications and standardization needs. Technical Report, European Committee for Standardization, 2011.
  • Chan W.K., 2000, On the calculation of the geometric factor in a van der Pauw sheet resistance measurement, Review of Scientific Instruments, Vol. 71, No. 10, p. 3964-3965.
  • Chen M.-Y., Lai K., Sun R., Fang H.-T., 2013, Electrical property evolution of metallic film deposited on polyethylene terephthalate substrate during tensile deformation, Textile Research Journal, Vol. 83, No. 11, p. 1113-1119.
  • Chen H.C., Lee K.C., Lin J.H., Koch M., 2007a, Fabrication of conductive woven fabric and analysis of electromagnetic shielding via measurement and empirical equation, Journal of Materials Processing Technology, Vol. 184, p. 124-130.
  • Chen H.C., Lee K.C., Lin J.H., Koch M., 2007b, Comparison of electromagnetic shielding effectiveness properties of diverse conductive textiles via various measurement techniques, Journal of Materials Processing Technology, Vol. 192-193, p. 549-554.
  • Cherenack K., van Pieterson L., 2012, Smart textiles: Challenges and opportunities, Journal of Applied Physics, Vol. 112, No. 9, p. 091301-1 - 091301-14.
  • Chern J.G.J., Oldham W.G., 1984, Determining specific contact resistivity from contact end resistance measurements, IEEE Electron Device Letters, Vol. EDL-5, No. 5, p. 178-180.
  • Choi S., Jiang Z., 2006, A novel wearable sensor device with conductive fabric and PVDF film from monitoring cardiorespiratory signals, Sensors and Actuators A: Physical, Vol. 128, No. 2, p. 317-326.
  • Christensen N.B., 2000, Difficulties in determining electrical anisotropy in subsurface investigations, Geophysical Prospecting, Vol. 48, No. 1, p. 1-19.
  • Chwang R., Smith B.J., Crowell C.R., 1974, Contact size effects on the van der Pauw method for resistivity and Hall coefficient measurement, Solid-State Electron, Vol. 17, No. 12, p. 1217-1227.
  • Cioranescu D., Donato P., 2000, An introduction to homogenization, Oxford Lecture Series in Mathematics and its Applications, Book 17, Oxford University Press, London.
  • Corberán J.M., Verde M., Gil M., Martinez N., 2010, Study of adsorption materials for their application as perspiration-absorbing textiles, Textile Research Journal, Vol. 80, No. 12, p. 1160-1171.
  • Corder G.W., Foreman D.I., 2009, Nonparametric statistics for non-statisticians, Wiley, Hoboken, USA.
  • Cornils M., Doelle M., Paul O., 2007, Sheet resistance determination using symmetric structures with contacts of finite size, IEEE Transactions on Electron Devices, Vol. 54, No. 10, p. 2756-2761.
  • Cornils M., Paul O., 2008, Beyond van der Pauw: Sheet resistance determination from arbitrary shaped planar four-terminal devices with extended contacts, Proc. IEEE Conf. on Microelectronic Test Structures, Edinburgh, UK, March 24-27, p. 23-28.
  • Cottet D., Grzyb J., Kirstein T., Tröster G., 2003, Electrical characterization of textile transmission lines, IEEE Transactions on Advanced Packaging, Vol. 26, No. 2, p. 182-190.
  • Couto P.R.G., Damasceno J.C., Borges R.M.H., 2006, Uncertainty estimation of mechanical assays by ISO-GUM 95 and Monte-Carlo simulation - Case study: Tensile strength, torque and brinell hardness measurements, Proc. XVIII IMEKO World Congress, Rio de Janeiro, Brazil, September 17-22.
  • Cox G.M., Siebert B.R.L., 2006, The use of a Monte Carlo method for evaluating uncertainty and expanded uncertainty, Metrologia, Vol. 43, No. 4, p. S178-S188.
  • Cybulska M., Snycerski M., Ornat M., 2002, Qualitative evaluation of protective fabrics, AUTEX Research Journal, Vol. 2, No. 2, p. 69-77.
  • Daghero D., 2002, Experimental study of unconventional gap features in novel superconductors, Ph.D. Thesis, Politecnico di Torino, Turyn.
  • David J.M., Buehler M.G., 1977, A numerical analysis of various cross sheet resistor test structures, Solid-State Electron, Vol. 20, No. 6, p. 539-543.
  • David D.J., Mishra A., 1999, Relating materials properties to structure: Handbook and software for polymer calculations and materials properties, CRC Press LLC, London.
  • Dawalibi F., Blattner C.J., 1984, Earth resistivity measurement interpretation techniques, IEEE Transactions on Power Apparatus and Systems, Vol. PAS-103, No. 2, p. 374-382.
  • DeBenedictis J.J., 2005, Resistivity in YBa2Cu3O6.333, M.Sc. Thesis, The University of British Columbia, Vancouver.
  • Declercq F., Georgiadis A., Rogier H., 2011, Wearable aperture-coupled shorted solar patch antenna for remote tracking and monitoring applications, Proc. 5th European Conf. on Antennas and Propagation, Rome, Italy, April 11-15, p. 2992-2996.
  • Deen M.J., Pascal F., 2006, Electrical characterizations of semiconductor materials and devices - review, Journal of Materials Science - Materials in Electronics, Vol. 17, No. 8, p. 549-575.
  • Depla D., Segers S., Leroy W., Van Hove T., Van Parys M., 2011, Smart textiles: An explorative study of the use of magnetron sputter deposition, Textile Research Journal, Vol. 81, p. 1808-1817.
  • De Rossi D., Carpi F., Lorusi F., Mazzoldi A., Paradiso R., Scilingo E.P., Tognetti A., 2003, Electroactive fabrics and wearable biomonitoring devices, AUTEX Research Journal, Vol. 3, No. 4, p. 180-185.
  • De Souza F.G. Jr., Soares B.G., Pinto J.C., 2008, Electrical surface resistivity of conductive polymers - A non-Gaussian approach for determination of confidence intervals, European Polymer Journal, Vol. 44, No. 11, p. 3908-3914.
  • Devaux E., Koncar V, Kim B., Campagne C., Roux C., Rochery M., Saihi D., 2007, Processing and characterization of conductive yarns by coating or bulk treatment for smart textile applications, Transactions of the Institute of Measurement and Control, Vol. 29, No. 3/4, p. 355-376.
  • DIN 54345-1. Testing of textiles; electrostatic behaviour; determination of electrical resistance. Beuth Verlag GmbH, Berlin, 1992.
  • Document 40/2125/NP. Method of measurement of low resistance. Project IEC 62812 Ed. 1.0. International Electrotechnical Commission, Geneva, 2011.
  • Dos Santos C.A.M., De Campos A.,Da Luz M.S., White B.D., Neumeier J.J., De Lima B.S., Shigue C.Y., 2011, Procedure for measuring electrical resistivity of anisotropic materials: A revision of the Montgomery method, Journal of Applied Physics, Vol. 110, No. 8, p. 083703-1 - 083703-7.
  • Džakula R., Savić S., Stojanović G., 2008, Investigation of electrical characteristics of different ceramic samples using Hall effect measurement, Processing and Application of Ceramics, Vol. 2, No. 1, p. 33-37.
  • Ellis M.H., Sinha M.C., Minshull T.A., Sothcott J. Best A.I., 2010, An anisotropic model for the electrical resistivity of two-phase geologic materials, Geophysics, Vol. 75, No. 6, p. E161-E170.
  • EN-ISO 139. Textiles. Standard atmospheres for conditioning and testing. International Organization for Standardization, Geneva, 2005.
  • Ersoy M.S., Önder E., Sarier N., 2008, Nanostructured electrically conductive textiles with electromagnetic shielding property, Proc. Int. Scientific Conf. Smart Textiles - Technology and Design, Borås, Sweden, June 2-3, p. 204-207.
  • Friedman T.A., Rabin M.W., Giapintzakis J., Rice J.P., Ginsberg D.M., 1990, Direct measurement of the anisotropy of the resistivity in the a-b plane of twin-free, single-crystal, superconducting YBa2Cu3O7-δ, Physical Review B, Vol. 42, No. 10, p. 6217-6221.
  • Frydrysiak M., Tokarska M., Zięba J., 2012a, Prototype textile electrodes for medical use, Proc. 12th AUTEX World Textile Conf., Zadar, Croatia, June 13-15, p. 1395-1400.
  • Frydrysiak M., Zięba J., 2012, Textronic sensor for monitoring respiratory rhythm, Fibres and Textiles in Eastern Europe, Vol. 20, No. 2(91), p. 74-78.
  • Frydrysiak M., Zięba J., Tęsiorowski Ł., Tokarska M., 2012b, Textronic system to muscle electrostymulation, World Academy of Science, Engineering and Technology, No. 71, November 2012, p. 1358-1364.
  • Frydrysiak M., Zięba J., Tęsiorowski Ł., Tokarska M., 2013, Analysis of electroconductive properties of textile materials for use as electrodes, Tekstil, Vol. 62, No. 7-8, p. 295-301.
  • Furtak N.T., Skrzetuska E., Krucińska I., 2013, Development of screen-printed breathing rate sensors, Fibers and Textiles in Eastern Europe, Vol. 21, No. 6(102), p. 84-88.
  • Gniotek K., 2002, Modelling and measurement of textile objects for experiment design, Fibers and Textiles in Eastern Europe, Vol. 10, No. 2(37), p. 54-52.
  • Gniotek K., 2004, Metodyka identyfikacji pewnych właściwości obiektów włókienniczych, PAN, oddział w Łodzi, Komisja Włókiennictwa, Łódź.
  • Gniotek K., Frydrych I., 2010, Systemy tekstroniczne w mechatronice, rozdział książki ‘Mechatronika’, T. 2, red. S. Wiak, Akademicka Oficyna Wydawnicza EXIT, Łódź, s. 425-487.
  • Gniotek K., Frydrysiak M., Zięba J., Tokarska M., Stempień Z., 2011a, Innovative textile electrodes for muscles electrostimulation, 2011 IEEE International Workshop on Medical Measurements and Applications, p. 305-310.
  • Gniotek K., Gołębiowski J., Leśnikowski J., 2009, Temperature measurements in a textronic fireman suit and visualisation of the results, Fibres and Textiles in Eastern Europe, Vol. 17, No. 1(72), p. 97-101.
  • Gniotek K., Krucińska I., 2004, The basic problems of textronics, Fibres and Textiles in Eastern Europe, Vol. 12, No. 1(45), p. 13-16.
  • Gniotek K., Stempień Z., Zięba J., 2003, Tekstronika - nowy obszar wiedzy, Przegląd Włókienniczy - Włókno, Odzież, Skóra, Nr 2, s. 17-18.
  • Gniotek K., Zięba J., Frydrysiak M., 2008, Pomiary rezystancji styku nitek elektroprzewodzących, Pomiary Automatyka Kontrola, Vol. 54, Nr 9, s. 653-657.
  • Gniotek K., Zięba J., Frydrysiak M., Tokarska M., 2010, Pomiary rezystancji przejścia między dwiema nitkami elektroprzewodzącymi, Pomiary Automatyka Kontrola, Vol. 56, Nr 9, s. 1020-1023.
  • Gniotek K., Zięba J., Frydrysiak M., Tokarska M., 2011b, Zagadnienia metrologiczne w elektrostymulacji mięśni, rozdział monografii ‘Metrologia dziś i jutro - 2011’, red. W. Walendziuk, J. Jakubiec, M. Świercz, Politechnika Białostocka, Białystok, s. 93-106.
  • Gryz K., Karpowicz J., Kurczewska A., Stefko A., Smalcerz A., 2009, Ograniczanie ryzyka zawodowego przy źródłach pól elektromagnetycznych (3) - przegląd wybranych materiałów barierowych, Bezpieczeństwo Pracy, Nr 03, s. 22-26.
  • Guide, 2008, Guide to the Expression of Uncertainty in Measurement, JCGM, Geneva, Switzerland.
  • Guimard N.K., Gomez N., Schmidt C.E., 2007, Conducting polymers in biomedical engineering, Progress in Polymer Science, Vol. 32, No. 8-9, p. 876-921.
  • Gunnarsson E., Karlsteen M., Berglin L., Stray J., 2014, A novel technique for direct measurements of contact resistance between interlaced conductive yarns in a plain weave, Textile Research Journal, Published online: September 11, 2014, DOI: 10.1177/0040517514532158.
  • Guo R.H., Jiang S.X., Yuen C.W.M., Ng M.C.F., Lan J.W., 2013, Metallized textile design through electroless plating and tie-dyeing technique, The Journal of The Textile Institute, Vol. 104, No.10, p. 1049-1055.
  • Guo L., Soroudi A., Berglin L., Mattila H., Skrifvars M., Torstensson H., 2011, Fibre-based single-wire keyboard - the integration of a flexible tactile sensor into e-textiles, AUTEX Research Journal, Vol. 11, No. 4, p. 106-109.
  • Gutiérrez M.P., Li H., Patton J., 2002, Thin film surface resistivity, Proc. Conf. Fall 2002, Course MatE 210, Experimental Methods in Materials Engineering, SJSU, USA.
  • Heaney M.B., 1999, Electrical conductivity and resistivity, chapter in ‘The measurement, instrumentation and sensors handbook’, ed. by J.G. Webster, CRC Press LLC, London.
  • Hertleer C., Van Langenhove L., Rogier H., 2008, Printed textile antennas for offbody communication, Advances in Science and Technology, Vol. 60, p. 64-66.
  • Husain M.D., Kennon R., Dias T., 2014, Design and fabrication of Temperature Sensing Fabric, Journal of Industrial Textiles, Vol. 44, No. 3, p. 398-417.
  • IEC 60051-6. Direct acting indicating analogue electrical measuring instruments and their accessories. Part 6: Special requirements for ohmmeters (impedance meters) and conductance meters. International Electrotechnical Commission, Geneva, 1984.
  • IEC 60093. Methods of test for volume resistivity and surface resistivity of solid electrical insulating materials. International Electrotechnical Commission, Geneva, 1980.
  • Jiang S.X., Qin W.F., Guo R.H. Zhang L., 2010, Surface functionalization of nanostructured silver-coated polyester fabric by magnetron sputtering, Surface and Coatings Technology, Vol. 204, No. 21-22, p. 3662-3667.
  • Kacprzyk R., 2011, Measurements of the volume and surface resistance of textile materials, Fibres and Textiles in Eastern Europe, Vol. 19, No. 1 (84), p. 47-49.
  • Kannaian T., Neelaveni R., Thilagavathi G., 2012, Design and development of embroidered textile electrodes for continuous measurement of electrocardiogram signals, Journal of Industrial Textiles, Vol. 42, No. 3, p. 303-318.
  • Karaguzel B., Merritt C.R., Kang T., Wilson J.M., Nagle H.T., Grant E., Pourdeyhimi B., 2009, Flexible, durable printed electrical circuits, The Journal of The Textile Institute, Vol. 100, No. 1, p. 1-9.
  • Kasl C., Hoch M.J.R., 2005, Effect of sample thickness on the van der Pauw technique for resistivity measurements, Review of Scientific Instruments, Vol. 76, No. 3, p. 033907-1 - 033907-4.
  • Kaynak A., Hĺkansson E., Amiet A., 2009, The influence of polymerization time and dopant concentration on the absorption of microwave radiation in conducting polypyrrole coated textiles, Synthetic Metals, Vol. 159, No. 13, p. 1373-1380.
  • Kazani I., 2012, Study of screen-printed electroconductive textile materials, Ph.D. Thesis, Ghent University, Gent.
  • Kazani I., De Mey G., Hertleer C., Banaszczyk J., Schwarz A., Guxho G., Van Langenhove L., 2013, About the collinear four-probe techniques inability to measure the resistivity of anisotropic electroconductive fabrics, Textile Research Journal, Vol. 83, No. 15, p. 1587-1593.
  • Kazani I., De Mey G., Hertleer C., Banaszczyk J., Schwarz A., Guxho G., Van Langenhove L., 2011, Van der Pauw method for measuring resistivities of anisotropic layers printed on textile substrates, Textile Research Journal, Vol. 81, No. 20, p. 2117-2124.
  • Kazani I., Hertleer C., De Mey G., Guxho G., Van Langenhove L., 2013, Dry cleaning of electroconductive layers screen printed on flexible substrates, Textile Research Journal, Vol. 83, No. 14, p. 1541-1548.
  • Kazani I., Hertleer C., De Mey G., Schwarz A., Guxho G., Van Langenhove L., 2012, Electrical conductive textiles obtained by screen printing, Fibres and Textiles in Eastern Europe, Vol. 20, No. 1(90), p. 57-63.
  • Kim H.S., Kang J.S., Park J.-S., Hahn H.T., Jung H.Ch., Joung J.W., 2009, Inkjet printed electronics for multifunctional composite structure, Composites Science and Technology, Vol. 69, No. 7-8, p. 1256-1264.
  • Kirstein T., Lawrence M., Tröster G., 2003, Functional Electrical Stimulation (FES) with smart textile electrodes, Int. Workshop on a New Generation of Wearable Systems for E-Health, Lucca, Italy, December 11-14, 2003.
  • Kittel Ch., 1999, Wstęp do fizyki ciała stałego, PWN, Warszawa.
  • Kleiza J., Kleiza V., 2011, On the applying of the Van der Pauw method to anisotropic media, Acta Physica Polonica A, Vol. 119, No. 2, p. 148-150.
  • Kleiza J., Sapagovas M., Kleiza V., 2007, The extension of the Van der Pauw method to anisotropic media, Informatica, Vol. 18, No. 2, p. 253-266.
  • Koon D.W., 1989, Effect of contact size and placement, and of resistive inhomogeneities on van der Pauw measurements, Review of Scientific Instruments, Vol. 60, No. 2, p. 271-274.
  • Koon D.W., Bahl A.A., Duncan E.O., 1989, Measurement of contact placement errors in the van der Pauw technique, Review of Scientific Instruments, Vol. 60, No. 2, p. 275-276.
  • Król I.A., Redlich G., Obersztyn E., Fortuniak K., Maklewska E., Olejnik M., Bartczak A., 2010, Surowce o właściwościach elektroprzewodzących w wyrobach wysokospecjalistycznych, Techniczne Wyroby Włókiennicze, R. 18, nr 3/4, s. 12-18.
  • Kubisa S., Moskowicz S., 2007, A study on transitivity of Monte Carlo based evaluation of the confidence interval for a measurement result, Pomiary Automatyka Kontrola, Vol. 53, Nr 6, s. 7-10.
  • Kyriakos D.S., Economou N.A., Allgaier R.S., 1980, Weak field galvanomagnetic measurements to distinguish cubic from non-cubic environments, Revue de Physique Appliquée, Vol. 15, No. 3, p. 733-739.
  • Laforgue A., Ajji A., Robitaille L., 2008, Nano and micro fibers for conductive applications, Proc. Int. Scientific Conf. Smart Textiles - Technology and Design, Borås, Sweden, June 2-3, p. 31-37.
  • Lai K., Sun R.-J., Chen M.-Y., Wu H., Zha A.-X., 2007, Electromagnetic shielding effectiveness of fabrics with metallized polyester filaments, Textile Research Journal, Vol. 77, No. 4, p. 242-246.
  • Lenda A., 2004, Wybrane rozdziały matematycznych metod fizyki, AGH, Kraków.
  • Leśnikowski J., 2011, Textile transmission lines in the modern textronic clothes, Fibres and Textiles in Eastern Europe, Vol. 19, No. 6(89), p. 89-93.
  • Leśnikowski J., 2013, Modelowanie tekstylnych linii sygnałowych do zastosowań w tekstronice, Zeszyty Naukowe Nr 1167, Rozprawy naukowe, Z. 467, red. K. Kowalski, Wydawnictwo Politechniki Łódzkiej, Łódź.
  • Leśnikowski J., Tokarska M., 2014, Modelling of selected electric properties of textile transmission lines using neural networks, Textile Research Journal, Vol. 84, No. 3, p. 290-302.
  • Levin G.A., 1997, On the theory of measurement of anisotropic electrical resistivity by flux transformer method, Journal of Applied Physics, Vol. 81, No. 2, p. 714-718.
  • Li L., Au W.M., Wan K.M., Wan S.H., Chung W.Y., Wong K.S., 2010, A resistive network model for conductive knitting stitches, Textile Research Journal, Vol. 80, No. 10, p. 935-947.
  • Lim S.H.N., McKenzie D.R., Bilek M.M.M., 2009, Van der Pauw method for measuring resistivity of a plane sample with distant boundaries, Review of Scientific Instruments, Vol. 80, No. 7, p. 075109-1 - 075109-4.
  • Lisowski M., 2004, Pomiary rezystywności i przenikalności elektrycznej dielektryków stałych, Politechnika Wrocławska, Wrocław.
  • Locher I., Klemm M., Kirstein T., Tröster G., 2006, Design and characterization of purely textile patch antennas, IEEE Transactions on Advanced Packaging, Vol. 29, No. 4, p. 777-788.
  • Locher I., Tröster G., 2007a, Fundamental building blocks for circuits on textiles, IEEE Transactions on Advanced Packaging, Vol. 30, No. 3, p. 541-550.
  • Locher I., Tröster G., 2007b, Screen-printed textile transmission lines, Textile Research Journal, Vol.77, No.11, p.837-842.
  • Logan B.F., Rice S.O., Wick R.F., 1971, Series for computing current flow in a rectangular block, Journal of Applied Physics, Vol. 42, No. 7, p. 2975-2980.
  • Lu Y., Liang Q., Li W., 2013, Fabrication of copper/modal fabric composites through elctroless plating process for electromagnetic interference shielding, Materials Chemistry and Physics, Vol. 140, No. 2-3, p. 553-558.
  • Lu Y., Liang Q., Xue L.L., 2012, Electroless nickel deposition on silane modified bamboo fabric through silver, copper or nickel activation, Surface and Coatings Technology, Vol. 206, No. 17, p. 3639-3644.
  • Ludwig R., Luenberger G., 2003, Density - conductivity measurements in green state compacts, Proc. Spring Meeting, Worcester, UK, April 9-10.
  • Manukowa A., Ivanov I., 2011, Electronic system for analyzing the electrical resistance of biological tissue in forensics, Elektronika, Nr 6, s. 121-124.
  • Marquez J.C., Seoane F., Välimäki E., Lindecrantz K., 2009, Textile electrodes in electrical bioimpedance measurements - a comparison with conventional Ag/AgCl electrodes, 31st Annual Int. Conf of the IEEE Engineering in Medicine and Biology Society, Minneapolis, USA, September 3-6.
  • Martin T., Jones M., Chong J., Quirk M., Baumann K., Passauer L., 2009, Design and implementation of an electronic textile jumpsuit, Proc. Int. Symposium ISWC, Linz, Austria, September 4-7, p. 157-168.
  • Martin N., Sauget J., Nyberg T., 2013, Anisotropic electrical resistivity during annealing of oriented columnar titanum films, Materials Letters, Vol. 105, p. 20-23.
  • Masajtis J., 1999, Analiza strukturalna tkanin, PAN, Komisja Włókiennictwa, Łódź.
  • Matsumura T., Sato Y., 2010, A theoretical study on Van der Pauw measurement values of inhomogeneous compound semiconductor thin films, Journal of Modern Physics, Vol. 1, No. 5, p. 340-347.
  • Mattmann C., Clemens F., Tröster G., 2008, Sensor for measuring strain in textile, Sensors, Vol. 8, No. 6, p. 3719-3732.
  • Mazzoldi A., De Rossi D., Lorussi F., Scilingo E.P., Paradiso R., 2002, Smart textiles for wearable motion capture systems, AUTEX Research Journal, Vol. 2, No. 4, p. 199-203.
  • McLachlan D., 1987, An equation for the conductivity of binary mixtures with anisotropic grain structures, Journal of Physics C: Solid State Physics, Vol. 20, No. 7, p. 865-877.
  • Meyer J., Lukowicz P., Tröster G., 2006, Textile pressure sensor for muscle activity and motion detection, 10th IEEE Int. Symposium on Wearable Computers, Montreux, Switzerland, October 11-14, p. 69-72.
  • Minkina W., Dudzik S., 2009, Termografia w podczerwieni - błędy i niepewności, Pomiary Automatyka Kontrola, Vol. 55, Nr 11, s. 868-873.
  • Mirnov V.S., Kim J.K., Park M., Lim S., Cho W.K., 2007, Comparison of electrical conductivity data obtained by four-electrode and four-point probe methods for graphite-based polymer composites, Polymer Testing, Vol. 26, No. 4, p. 547-555.
  • Montgomery H.C., 1971, Method for measuring electrical resistivity of anisotropic materials, Journal of Applied Physics, Vol. 42, No. 7, p. 2971-2975.
  • Moroń Z., 2003, Pomiary przewodności elektrycznej cieczy przy małych częstotliwościach, Politechnika Wrocławska, Wrocław.
  • Morton W.E., Hearle W.S., 2008, Physical properties of textile fibres, 4th Ed., Woodhead Publishing, Cambridge.
  • Muzaffar H., Williams K.S., 2006, Evaluation of complete elliptic integrals of the first kind at singular moduli, Taiwanese Journal of Mathematics, Vol. 10, No. 6, p. 1633-1660.
  • Nakad Z., Jones M., Martin T., Shenoy R., 2007, Using electronic textiles to implement an acoustic beamforming array: A case study, Pervasive and Mobile Computing, Vol. 3, No. 5, p. 581-606.
  • Náhlík J., Kašpárková I., Fitl P., 2011, Study of quantitative influence of sample defects on measurements resistivity of thin films using van der Pauw method, Measurement, Vol. 44, No. 10, p. 1968-1979.
  • Náhlík J., Kašpárková I., Fitl P., 2013, Influence of non-ideal circumferential contacts on errors in the measurements of the resistivity of layers using the van der Pauw method, Measurement, Vol. 46, No. 2, p. 887-892.
  • Neelakandan R., Giridev V.R., Murugesan M., Madhusoothanan M., 2009, Surface resistivity and shear characteristics of polyaniline coated polyester fabric, Journal of Industrial Textiles, Vol. 39, No. 2, p. 175-186.
  • Negru D., Cozmin-Toma B., Avram D., 2012, Electrical conductivity of woven fabrics coated with carbon black particles, Fibres and Textiles in Eastern Europe, Vol. 20, No. 1(90), p. 53-56.
  • Neruda M., Vojtech L., 2012, Verification of surfach conductance model of textile materiale, Journal of Applied Research and Technology, Vol. 10, p. 578-584.
  • Oh K.W., Park H.J., Kim S.H., 2003, Stretchable conductive fabric for electrotherapy, Journal of Applied Polymer Science, Vol. 88, No. 5, p. 1225-1229.
  • Osada E., Sergieieva K., 2010, Długości, pola lub kąty, Geodeta: Magazyn Geoinformacyjny, Nr 1, s. 46-50.
  • Ouyang Y., Chappell W.J., 2008, High frequency properties of electro-textiles for wearable antenna applications, IEEE Transactions on Antennas and Propagation, Vol. 56, No. 2, p. 381-389.
  • Pacelli M., Loriga G., Taccini N., Paradiso R., 2006, Sensing fabrics for monitoring physiological and biomechanical variables: E-textile solutions, Proc. Conf. IEEE Engineering in Medicine and Biology Society, MIT, Boston, USA, September 4-6. • Pawlak R., Korzeniewska E., Frydrysiak M., Zięba J., Tęsiorowski Ł., Gniotek K., Stempień Z., Tokarska M., 2012, Using vacuum deposition technology for the manufacturing of electro-conductive layers on the surface of textiles, Fibres and Textiles in Eastern Europe, Vol. 20, No. 2(91), p. 68-72.
  • Peirce F.T., 1937, The geometry of cloth structure,” The Journal of The Textile Institute, Vol. 28, No. 3, p. T45-T96.
  • Petersen P., Helmer R., Pate M., Eichhoff J., 2011, Electronic textile resistor design and fabric resistivity characterization, Textile Research Journal, Vol. 81, No. 13, p. 1395-1404.
  • Piche A., Revel I., Peres G., 2011, Experimental and numerical methods to characterize electrical behaviour of carbon fiber composites used in aeronautic industry, chapter in ‘Advances in composite materials - Analysis of natural and manmade materials’, ed. by Dr. P. Tesinova, InTech, Rijeka, p. 481-496.
  • PN-E-04405. Materiały elektroizolacyjne stałe. Pomiary rezystancji. Polski Komitet Normalizacyjny, Warszawa, 1988.
  • PN-EN ISO 5084. Tekstylia. Wyznaczanie grubości wyrobów włókienniczych. Polski Komitet Normalizacyjny, Warszawa, 1999.
  • PN-EN 1149-1. Odzież ochronna. Właściwości elektrostatyczne. Część 1: Metoda badania rezystywności powierzchniowej. Polski Komitet Normalizacyjny, Warszawa, 2008.
  • PN-EN 1149-2/Ap1. Odzież ochronna. Właściwości elektrostatyczne. Metoda badania rezystancji skrośnej. Polski Komitet Normalizacyjny, Warszawa, 2001.
  • PN-ISO 3801. Tekstylia. Tkaniny. Wyznaczanie masy liniowej i powierzchniowej. Polski Komitet Normalizacyjny, Warszawa, 1993.
  • PN-P-01704. Tekstylia. Sploty. System kodów i przykłady. Polski Komitet Normalizacyjny, Warszawa, 1992.
  • PN-P-04871. Tekstylia. Wyznaczanie rezystywności elektrycznej. Polski Komitet Normalizacyjny, Warszawa, 1991.
  • Polański Z., 1984, Planowanie doświadczeń w technice, PWN, Warszawa.
  • Price W.L.V., 1972, Extension of van der Pauw’s theorem for measuring specific resistivity in discs of arbitrary shape to anisotropic media, Journal of Physics D: Applied Physics, Vol. 5, No. 6, p. 1127-1132.
  • Raport, 2006, Printing electric circuits onto non-woven conformal fabrics using conductive inks and intelligent control, NTC Project: F04-NS17, National Textile Center Annual Report.
  • Rattfält L., Lindén M., Hult P., Berglin L., Ask P., 2007, Electrical characteristics of conductive yarns and textile electrodes for medical applications, Medical and Biological Engineering and Computing, Vol. 45, No. 12, p. 1251-1257.
  • Reeves G.K., Harrison H.B., 1982, Obtaining the specific contact resistance from transmission line model measurement, IEEE Electron Device Letters, Vol. EDL-3, No. 5, p. 111-113.
  • Rente A., Salvado R., Araújo P., 2008, Textile electrodes for cardiac monitoring, Proc. Int. Scientific Conf. Smart Textiles - Technology and Design, Borås, Sweden, June 2-3, p. 211-214.
  • Rietveld G., Koijmans Ch.V., Henderson L.C.A., Hall M.J., Harmon S., Warnecke P., Schumacher B., 2003, DC conductivity measurements in the Van der Pauw geometry, IEEE Transactions on Instrumentation and Measurement, Vol. 52, No. 2, p. 449-453.
  • Rius J., Manich S., Rodríguez R., Ridao M., 2007, Electrical characterization of conductive ink layers on textile fabrics: model and experimental results, Proc. XXII Conf. on Circuits and Integrated Systems, Session 7D, Paper 7D.2, November 2007.
  • Roh J-S., 2014, Textile touch sensors for wearable and ubiquitous interfaces, Textile Research Journal, Vol. 84, No. 7, p. 739-750.
  • Romero E., Molina J., Del Rio A.I., Bonastre J., Cases F., 2011, Textile Research Journal, Vol. 81, No. 14, p. 1427-1437.
  • Salvado R., Loss C., Gonçalves R., Pinho P., 2012, Textile materials for the design of ereable antennas: A survey, Sensors, Vol. 12, No. 11, p. 15841-15857.
  • Šafařova V., Militky J., 2014, Electromagnetic shielding properties of woven fabrics made from high-performance fibers, Textile Research Journal, Vol. 84, No. 12, p. 1255-1267.
  • Scarpello M.L., Kazani I., Hertleer C., Rogier H., Ginste D.V., 2012, Stability and efficiency of screen-printed wearable and washable antennas, IEEE Antennas Wireless Propagation Letters, Vol. 11, p. 838-841.
  • Schmelz W., 2009, Low dimensional transport in Si/SiGe heterostructures, Diploma Thesis, Institut für Halbleiter - und Festkörperphysik, Linz.
  • Schuetze A.P., Lewis W., Brown C., Geerts W.J., 2004, A laboratory on the fourpoint probe technique, American Journal of Physics, Vol. 72, No. 2, p. 149-153.
  • Schwarz A., Hakuzimana J., Westbroek P., De Mey G., Priniotakis G., Nyokong T., Van Langenhove L., 2012, A study on the morphology of thin copper films on para-aramid yarns and their influence on the yarn’s electro-conductive and mechanical properties, Textile Research Journal, Vol. 82, No. 15, p. 1587-1596.
  • Schwarz A., Kazani I., Cuny L., Hertleer C., Ghekiere F., De Clercq G., De Mey G., Van Langenhove L., 2011, Electro-conductive and elastic hybrid yarns - The effects of stretching cyclic straining and washing on their electro-conductive properties, Materials and Design, Vol. 32, No. 8-9, p. 4247-4256.
  • Sengupta S., Sengupta A., 2012, Electrical resistance of jute fabrics, Indian Journal of Fibre and Textile Research, Vol. 37, No. 1, p. 55-59.
  • Shockley W., 1964, Research and investigation of inverse epitaxial UHF power transistors, Report No. A1-TOR-64-207, Air Force Atomic Laboratory, Wright-Patterson Air Force Base, Ohio.
  • Smirnov I.A., Kalinin S.V., 2011, Analysis of certain methods for determining contact resistivity, Proc. Int. Conf. and Seminar of Young Specialists on Micro/Nanotechnologies and Electron Devices, Erlagol, Altai, Russia, June 30 - July 4.
  • Smits F.M., 1958, Measurement of sheet resistivity with the four-point probe, The Bell System Technical Journal, Vol. 37, No. 3, p. 711-718.
  • Song H.-Y., Lee J.-H., Kang D., Cho H., Chuo H.-S., Lee J.-W., Lee Y.-J., 2010, Textile electrodes of jacquard woven fabrics for biosignal measurement, The Journal of The Textile Institute, Vol. 101, No. 8, p. 758-770.
  • Soroudi A., Skrifvars M., 2008, Preparation of melt spun conductive polypropylene/polyaniline fibres for smart textile applications, Proc. Int. Scientific Conf. Smart Textiles - Technology and Design, Borås, Sweden, June 2-3, p. 26-30.
  • Stanisz A., 2006, Przystępny kurs statystyki z zastosowaniem STATISTICA PL na przykładach z medycyny, Tom 1. Statystyki podstawowe, StatSoft Polska, Kraków.
  • Stanisz A., 2007, Przystępny kurs statystyki z zastosowaniem STATISTICA PL na przykładach z medycyny, Tom 2. Modele liniowe i nieliniowe, StatSoft Polska, Kraków.
  • Stavitski N., Dal M.J.H., Wolters R.A.M., Kovalgin A.Y., Schmitz J., 2006, Specific contact resistance measurements of metal-semiconductor junctions, IEEE Int. Conf. on Microelectronic Test Structures, Austin, USA, March 6-9, p. 13-17.
  • Stec W., 2008, Metoda bezstykowego wyznaczania rezystancji cienkich warstw przewodzących, Rozprawa Doktorska, AGH, Kraków.
  • Stempień Z., Gniotek K., Zięba J., Tokarska M., Frydrysiak M., Tęsiorowski Ł., 2011, Textile-based printed electrodes for muscles electrostimulation, Proc. The Fiber Society Spring 2011 Conf., Hong Kong, China, May 23-25, p. 14-15.
  • Su C.I., Peng C.C., Lee C.Y., 2011, Performance of viscose rayon based activated carbon fabric modified by sputtering silver and continuous plasma treatment, Textile Research Journal, Vol. 81, No. 7, p. 730-737.
  • Sun Y., Ehrmann O., Wolf J., Reich H., 1992, Determination of the areas of a square sample suitable to the resistance measurement by Van der Pauw’s method, Review of Scientific Instruments, Vol. 63, No. 7, p. 3757-3762.
  • Supplement, 2008, Evaluation of Measurement Data - Supplement 1 to the ‘Guide to the Expression of Uncertainty in Measurement’ - Propagation of Distributions Using a Monte Carlo Method, JCGM, Geneva.
  • Supplement, 2011, Evaluation of Measurement Data - Supplement 2 to the ‘Guide to the Expression of Uncertainty in Measurement’ - Extension to any Number of Output Quantities, JCGM, Geneva.
  • Surma B., 2006, Nanoukłady oparte na nanorurkach węglowych, Przegląd Włókienniczy - Włókno Odzież Skóra, Nr 9, s. 52-55.
  • Szosland J., 2007, Struktury tkaninowe, PAN, Łódź.
  • Szparaga G., Mikołajczyk T., Frączek-Szczypta A., 2013, PAN precursor fibres containing multi-walled carbon nanotubes, Fibres and Textiles in Eastern Europe, Vol. 21, No. 6(102), p. 33-38.
  • Szymański K., Cieśliński J.L., Łapiński K., 2013, Van der Pauw metod on a sample with an isolated hole, Physics Letters A, Vol. 377, No. 8, p. 651-654.
  • TC 248 WI 00248533 (E). Textiles and textile products - Electrically conductive textiles - Determination of the electrical resistance of textile-based tracks. European Committee for Standardization, 2012.
  • Tezel S., Kavuşturan Y., Vandenbosch G.A.E., Volski V., 2014, Comparison of electromagnetic shielding effectiveness of conductive single jersey fabrics with coaxial transmission line and free space measurement techniques, Textile Research Journal, Vol. 84, No. 5, p. 461-476.
  • Tognetti A., Bartalesi R., Lorussi F., De Rossi D., 2007, Body segment position reconstruction and posture classification by smart textiles, Transactions of the Institute of Measurement and Control, Vol. 29, No. 3-4, p. 215-253.
  • Tokarska M., 2013, Measuring resistance of textile materials based on Van der Pauw method, Indian Journal of Fibre and Textile Research, Vol. 38, No. 2, p. 198-201.
  • Tokarska M., 2014a, Evaluation of measurement uncertainty of fabric surface resistance implied by the Van der Pauw equation, IEEE Transactions on Instrumentation and Measurement, Vol. 63, No. 6, p. 1593-1599.
  • Tokarska M., 2014b, Determination of fabric surface resistance by Van der Pauw method in case of contacts distant from the sample edge, AUTEX Research Journal, Vol. 14, No. 2, p. 55-60.
  • Tokarska M., Frydrysiak M., Zięba J., 2013, Electrical properties of flat textile material as inhomegeneous and anisotropic structure, Journal of Materials Science - Materials in Electronics, Vol. 24, No. 12, p. 5061-5068.
  • Tokarska M., Frydrysiak M., Zięba J., Tęsiorowski Ł., 2011, Określenie właściwości elektroprzewodzących tekstylnych elektrod w oparciu o wybrane metody pomiaru rezystancji, materiały VIII Konf. Naukowo-Technicznej Podstawowe Problemy Metrologii, Prace Komisji Metrologii Oddziału PAN w Katowicach, Seria: Konferencje Nr 15, Krynica Zdrój, 12-15 czerwca, s. 194-198.
  • Tokarska M., Gniotek K., 2010, Ocena niepewności pomiaru metodą symulacji Monte Carlo w oparciu o program STATISTICA, Przegląd Elektrotechniczny, R. 86, Nr 9, s. 43-46.
  • Tokarska M., Gniotek K., 2015, Anisotropy of the electroconductive properties of flat textiles, The Journal of The Textile Institute, Vol. 106, No. 1, p. 9-18.
  • Tokarska M., Zięba J., Frydrysiak M., Gniotek K., Błaszczyk J., Nawarycz T., 2010, The concept of the forearm’s phantom to the research of textile electrodes, Proc. 17th Int. Conf. Structure and Structural Mechanics of Textiles, Liberec, Czech Republic, November 18-19.
  • Tsai P.P., Bresee R.R., 2001, Using field theory to measure surface resistivity of high resistance polymeric films, Journal of Applied Polymer Science, Vol. 82, No. 11, p. 2856-2862.
  • Uhlir A., 1955, The potentials of finite systems of sources and numerical solutions of problems in semiconductor engineering, The Bell System Technical Journal, Vol. 34, p. 105-128.
  • Valdes L.B., 1954, Resistivity measurements on germanium, Proc. Institute of Radio Engineers, Vol. 42, p. 420-427.
  • Van der Pauw L.J., 1958, A method of measuring specific resistivity and Hall effect of discs of arbitrary shape, Philips Research Reports, Vol. 13, No. 1, p. 1-9.
  • Van der Pauw L.J., 1958/59, A method of measuring resistivity and Hall coefficient on lamellae of arbitrary shape, Philips Technical Review, Vol. 20, No. 8, p. 220-224.
  • Versnel W., 1978, Analysis of symmetrical Van der Pauw structures with finite contacts, Solid-State Electronics, Vol. 21, No. 10, p. 1261-1268.
  • Versnel W., 1983, Electrical characteristics of an anisotropic semiconductor sample of circular shape with finite contacts, Journal of Applied Physics, Vol. 54, No. 2, p. 916-921.
  • Vervust T., Buyle G., Bossuyt F., Vanfleteren J., 2012, Integration of stretchable and washable electronic modules for smart textile applications, The Journal of The Textile Institute, Vol. 103, No. 10, p. 1127-1138.
  • Vojtech L., Neruda M., 2013a, Design of radiofrequency protective clothing containing silver nanoparticles, Fibres and Textiles in Eastern Europe, Vol. 21, No. 5(101), p. 141-147.
  • Vojtech L., Neruda M., 2013b, Modelling of surface resistance and bulk resistance for wearable textile antenna design, Przegląd Elektrotechniczny, R. 89, Nr 2b, s. 217-222.
  • Wang X., Xu W., Li W., Cui W., 2009, Study on the electrical resistance of textiles under wet conditions, Textile Research Journal, Vol. 79, No. 8, p. 753-760.
  • Wasscher J.D., 1969, Electrical transport phenomena in MnTe, an antiferromagnetic semiconductor, Philips Research Reports, Supplement No. 8, Philips’ Gloeilampenfabriken, Eindhoven.
  • Weiss J.D., Kaplar R.J., Kambour K.E., 2008, A derivation of the van der Pauw formula from electrostatics, Solid-State Electronics, Vol. 52, No. 1, p. 91-98.
  • Wenner F., 1916, A method of measuring earth resistivity, Bulletin of the Bureau of Standards, Vol. 12, p. 469-478.
  • Willink R., 2009, Representing Monte Carlo output distributions for transferability in uncertainty analysis: Modelling with quantile functions, Metrologia, Vol. 46, No. 3, p. 154-166.
  • Wolfram S., 2003, The Mathematica® Book, 5th Ed., Wolfram Media.
  • Wu B., Huang X., Han Y., Gao Ch., Peng G., Liu C., Wang Y., Cui X., Zou G., 2010, Finite element analysis of the effect of electrodes placement on accurate resistivity measurement in a diamond anvil cell with van der Pauw technique, Journal of Applied Physics, Vol. 107, No. 10, p. 104903-1 - 104903-4.
  • Xia Z., Okabe T., Park J.B., Curtin W.A., Takeda N., 2003, Quantitative damage detection in CFRP composites: coupled mechanical and electrical models, Composites Science and Technology, Vol. 63, No. 10, p. 1411-1422.
  • Yang K., Torah R., Wei Y., Beeby S., Tudor J., 2013, Waterproof and durable screen printed silver conductive tracks on textiles, Textile Research Journal, Vol. 83, No. 19, p. 2023-2031.
  • Yoshimoto S., Murata Y., Kubo K., Tomita K. Motoyoshi K. Kimura T. Okino H., Hobara R., Matsuda I., Honda S-I., Katayama M., Hasegawa S., 2007, Four-point probe resistance measurements using ptir-coated carbon nanotube tips, Nano Letters, Vol. 7, No. 4, p. 956-959.
  • Zalewska J., Gąsior I., Sikora G., 2009, Laboratoryjne badania anizotropii elektrycznych właściwości skał, Geologia, T. 35, Z. 2/1, s. 567-575.
  • Zhang H., Tao X., Wang S., Yu T., 2005, Electro-mechanical properties of knitted fabric made from conductive multi-filament yarn under unidirectional extension, Textile Research Journal, Vol. 75, No. 8, p. 598-606.
  • Zhang T., Yi Y.B., 2008, Monte Carlo simulations of effective electrical conductivity in short-fiber composites, Journal of Applied Physics, Vol. 103, No. 1, 014910-1 - 014910-7.
  • Zięba J., Frydrysiak M., 2006, Textronics-electrical and electronic textiles, Sensors for breathing frequency measurement, Fibres and Textiles in Eastern Europe, Vol. 14, No. 5(59), p. 43-48.
  • Zięba J., Frydrysiak M., Gniotek K., 2007, Textronics system for the breathing measuring, Fibres and Textiles in Eastern Europe, Vol. 15, No. 5(64), p. 107-110.
  • Zięba J., Frydrysiak M., Tęsiorowski Ł., Tokarska M., 2011a, Textronic clothing to ECG measurement, 2011 IEEE International Workshop on Medical Measurements and Applications, p. 559-563.
  • Zięba J., Frydrysiak M., Tęsiorowski Ł., Tokarska M., 2012, Textronic matrix of electrode system to electrostimulation, 2012 IEEE International Workshop on Medical Measurements and Applications, p. 149-153.
  • Zięba J., Frydrysiak M., Tęsiorowski Ł., Tokarska M., Gniotek K., 2011b, The research of textronic system to muscle electrostimulation, Proc. XI Int. Conf. IMTEX, Lodz, Poland, November 7-8.
  • Zięba J., Frydrysiak M., Tokarska M., 2010, The initial research of textile electrode to electrostimulation, Proc. 7th Int. Conf. TEXSCI, Liberec, Czech Republic, September 6-8.
  • Zięba J., Frydrysiak M., Tokarska M., 2011c, Research of textile electrodes to electrotherapy, Fibres and Textiles in Eastern Europe, Vol. 19, No. 5(88), p. 70-74.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-10ce4af8-5a04-4598-9abe-1f3d20bafdd0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.