Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
A simple and unified index is proposed to achieve knock detection under various engine loads. Maximum amplitude vibration oscillation (MAVO) and maximum amplitude pressure oscillation (MAPO) were compared and were found to have no consistency. This means that MAVO cannot accurately reflect knocks inside the engine cylinder in the time domain. However, a knocking index built with MAVO can effectively detect engine knocking under various engine loads, which implies that some important information connected to the knock may be hidden within it. In this circumstance, a frequency domain analysis and a wavelet transform were conducted to study the energy changes of vibration signals during engine knocking. The energy proportion of the D1 frequency band during knocking increased drastically. Therefore, it was used to build a knocking judgment index, which builds the relationship between MAVO and MAPO. The judgment index has good applicability under different engine loads and a value greater than 0.5 can be used effectively for knock detection.
Czasopismo
Rocznik
Tom
Strony
111--120
Opis fizyczny
Bibliogr. 25 poz., rys., tab.
Twórcy
autor
- School of Naval Architecture, Ocean and Energy Power Engineering, Wuhan University of Technology, Wuhan, China
- Key Laboratory of Marine Power Engineering &Technology, Ministry of Transport, Wuhan, China
autor
- School of Naval Architecture, Ocean and Energy Power Engineering, Wuhan University of Technology, Wuhan, China
autor
- School of Naval Architecture, Ocean and Energy Power Engineering, Wuhan University of Technology, Wuhan, China
- Key Laboratory of Marine Power Engineering &Technology, Ministry of Transport, Wuhan, China
autor
- College of Power Engineering, Naval University of Engineering, Wuhan, China
autor
- Key Laboratory for Power Machinery and Engineering, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Marine Diesel Engine Research Institute, Shanghai, China
- National Key Laboratory of Marine Engine Science and Technology, Shanghai, China
autor
- School of Naval Architecture, Ocean and Energy Power Engineering, Wuhan University of Technology, Wuhan, China
autor
- School of Naval Architecture, Ocean and Energy Power Engineering, Wuhan University of Technology, Wuhan, China
autor
- School of Naval Architecture, Ocean and Energy Power Engineering, Wuhan University of Technology, Wuhan, China
Bibliografia
- 1 Hudson C, Gao X, Stone R. Knock measurement for fuel evaluation in spark ignition engines. Fuel, 2001, 80(3): 395-407. https://doi.org/10.1016/S0016-2361(00)00080-6.
- 2 Boubai O. Knock detection in automobile engines. IEEE instrumentation & measurement magazine, 2000, 3(3): 24-28. https://doi.org/10.1109/5289.863907.
- 3 Ricci F, Mariani F, Cruccolini V, Violi M. Engine knock evaluation using a machine learning approach. SAE Technical Paper, 2020.
- 4 Lee JH, Hwang SH, Lim JS, Jeon DC, Cho YS. A new knock-detection method using cylinder pressure, block vibration and sound pressure signals from a SI engine. SAE transactions, 1998: 1808-1819. https://doi.org/10.4271/981436.
- 5 Liu L, Wu Y, Wang Y. Numerical investigation on knock characteristics and mechanism of large-bore natural gas dual-fuel marine engine. Fuel, 2022, 310: 122298. https://doi.org/10.1016/j.fuel.2021.122298.
- 6 Siano D, Panza MA, D’Agostino D. Knock detection based on MAPO analysis, AR model and discrete wavelet transform applied to the in-cylinder pressure data: results and comparison. SAE International Journal of Engines, 2015, 8(1): 1-13. https://doi.org/10.4271/2014-01-2547.
- 7 Naber JD, Blough JR, Frankowski D, Goble M, Szpytman JE. Analysis of combustion knock metrics in spark-ignition engines. SAE Transactions, 2006: 223-243. https://doi.org/10.4271/2006-01-0400.
- 8 Guo A. A vibration sensor design research. Sensors & Transducers, 2014, 169(4): 228-234. https://doi.org/10.2478/pomr-2024-0037.
- 9 Varbanets R; Minchev D; Kucherenko Y; Zalozh V; Kyrylash O; Tarasenko Tetyana. Methods of Real-Time Parametric Diagnostics for Marine Diesel Engines. Polish Maritime Research, 2024, 31(3): 71-84. https://doi.org/10.2478/pomr-2024-0037.
- 10 Ismail MM, Fawzi M, Taweekun J, Leevijit T. Engine knock detection for a multi-fuel engine using engine block vibration with statistical approach. Methods X, 2021, 8: 101583. https://doi.org/10.1016/j.mex.2021.101583.
- 11 Akimoto K, Komatsu H, Kurauchi A. Development of pattern recognition knock detection system using short-time Fourier transform. IFAC Proceedings Volumes, 2013, 46(21): 366-371. https://doi.org/10.3182/20130904-4-JP-2042.0003.
- 12 Vulli S, Dunne JF, Potenza R, Richardson D, King P. Time-frequency analysis of single-point engine-block vibration measurements for multiple excitation-event identification. Journal of Sound and Vibration, 2009, 321(3): 1129-43. https://doi.org/10.1016/j.jsv.2008.10.011 https://doi.org/10.1016/j.jsv.2008.10.011.
- 13 Napolitano P, Jimenez I, Pla B, Beatrice C. Knock recognition based on vibration signal and Wiebe function in a heavy-duty spark ignited engine fuelled with Methane. Fuel, 2022, 315: 122957. https://doi.org/10.1016/j.fuel.2021.122957.
- 14 Rosas M, Amador G. Knock detection method for dual-fuel compression ignition engines based on block vibration analysis. SAE International Journal of Engines, 2021, 14(2): 199-210. https://doi.org/10.4271/03-14-02-0012.
- 15 Park ST, Yang J. Engine knock detection based on wavelet transform. Proceedings of The 8th Russian-Korean International Symposium on Science and Technology, 2004. KORUS 2004. IEEE, 2004, 3: 80-83.
- 16 Borg JM, Saikalis G, Oho S, Cheok KC. Knock signal analysis using the discrete wavelet transform. SAE Technical Paper, 2006. https://doi.org/10.4271/2006-01-0226.
- 17 Wu Y, Du R. Feature extraction and assessment using wavelet packets for monitoring of machining processes. Mechanical systems and signal processing, 1996, 10(1): 29-53. https://doi.org/10.1006/mssp.1996.0003.
- 18 Borg JM, Cheok KC, Saikalis G, Oho S. Wavelet-based knock detection with fuzzy logic//CIMSA. 2005 IEEE International Conference on Computational Intelligence for Measurement Systems and Applications, 2005. IEEE, 2005: 26-31.
- 19 Siano D, D’Agostino D. Knock detection in SI engines by using the discrete wavelet transform of the engine block vibrational signals. Energy Procedia, 2015, 81: 673-688. https://doi.org/10.1016/j.egypro.2015.12.052.
- 20 Li N, Yang J, Zhou R, Wang Q. Knock detection in spark ignition engines using a nonlinear wavelet transform of the engine cylinder head vibration signal. Measurement Science and Technology, 2014, 25(11): 115002. https://doi.org/10.1088/0957-0233/25/11/115002.
- 21 Liu C, Gao Q. Feature extraction in knocking detection of gasoline engine. Transactions of CSICE, 2012, 30(02): 161-165.
- 22 Chang J, Kim M, Min K. Detection of misfire and knock in spark ignition engines by wavelet transform of engine block vibration signals. Measurement Science and Technology, 2002, 13(7): 1108-1114. https://doi.org/10.1088/0957-0233/13/7/319.
- 23 Zhang Z, Tomota E. A new diagnostic method of knocking in a spark-ignition engine using the wavelet transform. SAE transactions, 2000: 972-979. https://doi.org/10.4271/2000-01-1801.
- 24 Zeldovich YB. To the question of energy use of detonation combustion. Journal of propulsion and power, 2006, 22(3): 588-592. https://doi.org/10.2514/1.22705.
- 25 Qiao X, Hou J, Wang Z, Zhou J, Huang Z. Knock investigation of a direct injection−homogeneous charge compression ignition engine fuelled with dimethyl ether and liquefied petroleum gas. Energy & Fuels, 2009, 23(4): 2006-2012. https://doi.org/10.1021/ef800981y.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki i promocja sportu (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-10cd3a5c-0f4c-4126-8667-e8f4c15a37f5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.