PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Comparison of concentrated winding topologies considering transient voltages in the winding system of inverter-driven low-voltage machines

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
To reduce the losses of the power electronic inverter, the voltage slew rate (d u/d t) of the electric motors supplying voltage is increasing. As steep voltage slopes excite high frequencies in the megahertz range, transient phenomena in the winding of the electrical machine occur. To design the insulation system, the maximum electric potential difference between the conducting elements must be predicted. General design rules can lead to a significant overengineering of the interturn insulation, particularly when considering smaller stators with a known wire distribution. Therefore, two different winding topologies are studied comparing the voltage distribution in a round-wire winding and a winding with preformed coils.
Rocznik
Strony
865--880
Opis fizyczny
Bibliogr 19 poz., rys., tab., wz.
Twórcy
  • Institute of Electrical Machines (IEM), RWTH Aachen University, Germany
  • Institute of Electrical Machines (IEM), RWTH Aachen University, Germany
  • Institute of Electrical Machines (IEM), RWTH Aachen University, Germany
autor
  • Institute of Electrical Machines (IEM), RWTH Aachen University, Germany
Bibliografia
  • [1] Wright M.T., Yang S.J., McLeay K., General theory of fast fronted interturn voltage distribution in electrical machine windings, IEE Proceedings B (Electric Power Applications), vol. 130 no. 4, pp. 257–264 (1983), DOI: 10.1049/IP-B.1983.0040.
  • [2] McLaren P.G., Abdel-Rahman M.H., Modeling of large AC motor coils for steep-fronted surge studies, IEEE Transactions on Industry Applications, vol. 24, no. 3, pp. 422–426 (1988), DOI: 10.1109/28.2890.
  • [3] Toliyat H.A., Suresh G., Abur A., Estimation of voltage distribution on the inverter fed random wound induction motor windings supplied through feeder cable, IEEE Transactions on Energy Conversion, vol. 14, no. 4, pp. 976–981 (1999), DOI: 10.1109/60.815016.
  • [4] Wu Y.-F., Gritters J., Shen L., Smith R.P., Swenson B., kV-Class GaN-on-Si HEMTs Enabling 99% Efficiency Converter at 800 V and 100 kHz, IEEE Transactions on Power Electronics, vol. 29, no. 6, pp. 2634–2637 (2014), DOI: 10.1109/TPEL.2013.2284248.
  • [5] IEC 60034-18-41 ed. I, Rotating electrical machines – Part 18–41: Partial discharge free electrical insulation systems (Type I) used in rotating electrical machines fed from voltage converters – Qualification and quality control tests (2021).
  • [6] Magdun O., Blatt S., Binder A., Calculation of stator winding parameters to predict the voltage distributions in inverter fed AC machines, 2013 9th IEEE International Symposium on Diagnostics for Electric Machines, Power Electronics and Drives (SDEMPED), Valencia, Spain, pp. 447–453 (2013), DOI: 10.1109/DEMPED.2013.6645754.
  • [7] Ryu Y., Han K.J., Improved transmission line model of the stator winding structure of an AC motor considering high-frequency conductor and dielectric effects, 2017 IEEE International Electric Machines and Drives Conference (IEMDC), Miami, FL, USA, pp. 1–6 (2017), DOI: 10.1109/IEMDC.2017.8002140.
  • [8] Sousaferreira R., Ferreira A.C., Analysis of End-Windings Influence on the Transient Voltage Distribution in Machine Stator Windings by a Three-Phase Model, IEEE Transactions on Energy Conversion, vol. 36, no. 3 (2020), DOI: 10.1109/TEC.2020.3037453.
  • [9] Xie Y., Zhang J., Leonardi F., Munoz A.R., Liang F., Degner M.W., Modeling and Verification of Electrical Stress in Inverter-Driven Electric Machine Windings, 2018 IEEE Energy Conversion Congress and Exposition (ECCE), Portland, OR, USA, pp. 5742–5749 (2018), DOI: 10.1109/ECCE.2018.8558183.
  • [10] Pauli F., Driendl N., Hameyer K., Study on Temperature Dependence of Partial Discharge in Low Voltage Traction Drives, 2019 IEEE Workshop on Electrical Machines Design, Control and Diagnosis (WEMDCD), Athens, Greece, pp. 209–214 (2019), DOI: 10.1109/WEMDCD.2019.8887790.
  • [11] Lusuardi L., Cavallini A., de la Calle M.G., Martínez-Tarifa J.M., Robles G., Insulation design of low voltage electrical motors fed by PWM inverters, IEEE Electrical Insulation Magazine, vol. 35, no. 3, pp. 7–15 (2019), DOI: 10.1109/MEI.2019.8689431.
  • [12] Cavallini A., Fabiani D., Montanari G.C., Power electronics and electrical insulation systems – part 2: life modeling for insulation design, IEEE Electrical Insulation Magazine, vol. 26, no. 4, pp. 33–39 (2010), DOI: 10.1109/MEI.2010.5511187.
  • [13] Pauli F., Ruf A., Hameyer K., Low voltage winding insulation systems under the influence of high du/dt slew rate inverter voltage, Archives of Electrical Engineering, vol. 69, no. 1, pp. 187–202 (2020), DOI: 10.24425/aee.2020.131767.
  • [14] Pauli F., Groschup B., Schröder M., Hameyer K., High Torque Density Low Voltage Traction Drives with Preformed Coils: Evaluation of Operating Limitations, 2020 10th International Electric Drives Production Conference (EDPC), Ludwigsburg, Germany, pp. 1–8 (2020), DOI: 10.1109/EDPC 51184.2020.9388214.
  • [15] Petrell D., Teller M., Hirt G., Börzel S. Schäfer W., Economical production of conically shaped concentrated windings using forming technology for use in wheel hub engines, 2020 10th International Electric Drives Production Conference (EDPC), Ludwigsburg, Germany, pp. 1–8 (2020), DOI: 10.1109/EDPC51184.2020.9388188.
  • [16] Pauli F., Schröder M., Hameyer K., Design and Evaluation Methodology for Insulation Systems of Low Voltage Drives with Preformed Coils, 2019 9th International Electric Drives Production Conference (EDPC), Esslingen, Germany, pp. 1–7 (2019), DOI: 10.1109/EDPC48408.2019.9012039.
  • [17] Küchler A., High Voltage Engineering: Fundamentals – Technology – Applications, Springer Vieweg, Berlin (2018).
  • [18] Mahdavi S., Hameyer K., High frequency equivalent circuit model of the stator winding in electrical machines, 2012 XXth International Conference on Electrical Machines, Marseille, France, pp. 1706–1711 (2012), DOI: 10.1109/ICElMach.2012.6350110.
  • [19] Singha S., Thomas M.J., Permittivity and tan delta characteristics of epoxy nanocomposites in the frequency range of 1 MHz-1 GHz, IEEE Transactions on Dielectrics and Electrical Insulation, vol. 15, no. 1, pp. 2–11 (2008), DOI: 10.1109/T-DEI.2008.4446731.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-10c561e3-7a3b-4f44-9f7c-60b6d07e3f3a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.