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1. Introduction

The main aim of each water distribution system (WDS, water 
pipes network) is to deliver water of desirable quality and assumed 
quantity for customers. In order to meet these requirements, mainte-
nance services, like repairs and replacements of broken or malfunc-
tioned parts, are required.

The literature devoted to the problems of simulation of the WDS 
behaviour and to analysis of its reliability is very rich (see, e.g, [3, 4, 
7, 10, 11, 15, 17, 19, 25, 29] for a description of various approaches, 
and [16, 28] for a more detailed review of methods and literature). 
Because of a necessary long-time horizon planning (e.g. 20 or even 
50 years), an influence of a value of the money in the future on main-
tenance costs should be taken into account. Also such a problem is 
addressed in many papers.

For example, in [20], the main aim is to estimate and validate 
various cost functions for different types of assets of a WDS, if their 
hydraulic (e.g., flow, pump head, pump power) and physical char-
acteristics (e.g., volume, material, nominal diameter) are stored in a 
specially prepared data base. A method of a linear regression is used 
to model a dependency between  various types of the costs (like an 
equipment cost) and the mentioned characteristics of a pipe (like a 
nominal diameter) based on data from several Portuguese urban water 
utilities. However, a method for a  calculation of a present value of the 
total costs is not developed there in a more detailed way.

Contrary to the previous paper, in [12], let’s say, a “macro-man-
agement” approach for a WDS rehabilitation problem with a real 
long-time horizon is widely discussed. In this paper, both an econom-
ics and hydraulic capacity of a WDS is analysed, if a deterioration of a 
pipe follows the Hazen-Williams equation. The total costs are related 
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W niniejszym artykule przedstawiono model obliczający koszty utrzymania i konserwacji dla systemu dystrybucji wody (WDS). 
Zbiór możliwych stanów każdego połączenia (tzn. odcinku rurociągu w WDS) jest zdefiniowany przez różne poziomy jakości rury 
oraz występujące typy uszkodzeń. Proces przejść pomiędzy tymi stanami jest opisany procesem semi-Markowa. Wykorzystując 
symulacje Monte Carlo, uzyskano długości okresów obsługi oraz momenty niezbędnych wymian i napraw. Wartości te są następ-
nie wykorzystywane do estymowania kosztów utrzymania całego WDS. W kroku tym brana jest pod uwagę wartość pieniądza 
w czasie. W przeciwieństwie do innych podejść, zamiast stałej stopy procentowej, założono stochastyczny proces stopy (dany 
jednowymiarowym modelem Vasicka). Następnie na podstawie przeprowadzonych symulacji wykonano analizę opartą o różne 
miary niezawodności i obliczone koszty obsługi, np. zbadano wpływ parametrów połączenia (takich jak intensywność uszkodzeń) 
na ostateczne koszty konserwacji. Analizy tego typu mogą pełnić istotną rolę w ocenie ryzyka dla różnych możliwych do podjęcia 
decyzji. Poza podejściem typu crisp, zastosowano również symulacje Monte Carlo gdy niektóre z parametrów WDS zostały okre-
ślone w sposób rozmyty. Dzięki temu można wykorzystać niepewność oraz wiedzę ekspercką w proponowanej metodzie estymacji 
kosztów obsługi. Zwrócono uwagę na różnice występujące pomiędzy podejściem crisp i rozmytym. Zostały również opisane nie-
zbędne dla obydwu podejść odpowiednie algorytmy symulacyjne.

Słowa kluczowe:	 system dystrybucji wody, koszty konserwacji, proces semi-Markowa, symulacje Monte Carlo, 
wartość obecna.
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to a rehabilitation of a pipe and some additional maintenance costs 
(mainly breakage repair costs). To model the breakage rate, the expo-
nential dependency on an age of a pipe is assumed. The present value 
of the total costs is then calculated using a constant discount rate. 
The main aim of the whole procedure is to minimize the total costs 
associated with a rehabilitation, if some hydraulic constraints, neces-
sary for a quality and a quantity of the supplied water, are preserved. 
As mentioned in this paper, an analysis period for such a procedure is 
typically equal to 30-60 years.

There are also more specialized approaches to the problem of the 
costs estimation. For example, in [25], an optimisation procedure for a 
problem of minimising the costs is also described. In this case, the au-
thors express the total cost of a renewal, risk and an unavailability of a 
WDS as one function of time. But then this cost equation is minimized 
using the idea, that groups of pipes may be renewed together, if the 
benefits of grouping are balanced with the costs of shifting renewal 
investments in time. A special “greedy algorithm” is developed in or-
der to find a solution for such a setup, and this numerical method is 
then applied for a WDS in a medium-sized Norwegian municipality. 
The authors informed about a high level of possible savings, if their 
“grouping” method is used.

Apart from planning a renewal schedule, the estimation of the 
costs can have impact on other types of decisions, even regarding 
physical characteristics of pipes. In [21], the costs related to a simple 
WDS are analysed for up to 50 years period. Two kinds of scenarios 
(with and without a replacement) are discussed, for which minimi-
zation procedures are applied using the installation and repair costs 
with, so called, a damage and inconvenience cost multiplier (which is 
related to the claims from damages and other inconveniences caused 
by breaks). In this case a genetic algorithm is used to solve the opti-
mization problem. Then practical conclusions about the diameter of 
pipes, which should be installed, and an age, when instead of repair-
ing, a replacement should be done, are drawn. Once again, the authors 
emphasizes possible savings, if an appropriate analysis of the problem 
is conducted.

The authors of [3] also focus on physical characteristics of a 
pipe. For various types of materials used for pipes, different models 
of break rates, based on an exponential hazard function, are incorpo-
rated. Such an approach leads to different functions of the costs, in 
which the costs and possible benefits of inspection technologies are 
also taken into account. It should be noted that in this paper, only a 
nominal value of the money is considered.

In some papers, time, which is necessary for a whole repair proce-
dure, is completely neglected. Such an assumption may be accepted, 
even in practical situations (see, e.g., [28] for a more detailed discus-
sion), but in many papers the required time is modelled using some 
random variable. For example, in [11], the generalized exponential 
density is applied. The authors also describe various types of the costs 
related to repairs, like the costs of a procedure itself, the costs of an 
extra energy (which is necessary to satisfy the public demands), the 
costs of water losses and a loss of revenues (which takes place, when 
the water demands are not satisfied).

A completely different scale (let’s say, a “micro-management”) of 
the problem of the costs is considered in [1]. The authors, using USA-
CREL condition index (CI) system, optimize a maintenance time of a 
wastewater plumbing system for a single building – Esteghlal Hotel 
in Iran. The costs of repairs are given by a virtual variable related to 
a condition index of a component, and the costs of replacements are 
based on some physical characteristics of a pipe. In order to optimize 
the costs, a saving to investment method is applied. It allows the au-
thors to analyse the maintenance management costs and it leads them 
to formulate practical advices concerning the time when the whole 
water system in the building should be replaced instead of extending 
its maintenance or additional repairs.

Then other approaches to a function of the costs are also pos-
sible. In [32], a reliability of sand filters, as a part of a whole WDS, 
is considered. For the costs function, a concept of Life Cycle Costing 
is adopted. Apart from various sources of possible payments (during 
a construction phase, a usage phase and, finally, a disposal), some 
other factors are taken into account: an economical operational readi-
ness rate, a target operational readiness rate and a critical operational 
readiness rate. They form a whole concept of a risk analysis related to 
the possible costs.

As it is seen from these exemplary papers, the problem of an anal-
ysis and an estimation of the costs is very important during a construc-
tion and a further maintenance of a WDS. The approaches to such a 
problem are various, starting from a form of the cost function (which 
can depend on physical characteristics of a pipe, time of a repair 
etc.), through a scale of a WDS (a single building or a whole system), 
considered parts of a WDS (pipes, filters, intakes etc.), a scope of 
an analysis undertaken (which can include an additional optimization 
procedure, a calculation of some statistical measures etc.) and so on. 
However, we can point out some ideas, which are very common in 
these papers. Firstly, usually a long time period is considered, even 
50-60 years. Secondly, some numerical algorithm is applied, which 
generates possible times of occurrences of the faults, varied values of 
the costs etc. Thirdly, this algorithm is related to some random proc-
ess, which is assumed for the considered model. Fourthly, because of 
the mentioned length of the analysed period, the value of the money 
in time is usually taken into account.

Such an approach (i.e. introduction of the relation between the 
time and the value of the cash flows) is widely studied in financial 
mathematics, because it is known, that one unit of money, which is 
paid now, has different value than the same unit, which will be paid 
in the future. Therefore, we also adopt this idea and analyse the es-
timated present value (i.e. the value of money for now) of the costs 
of future services. The maintenance costs are one of the key factors 
during selection from a set of various possible decisions, if the finan-
cial risk is taken into account. However, in various papers, the re-
lated discounting factor is only a minor, almost negligible, part of the 
whole simulated model. Usually, the yield is given by a factor, which 
is constant in time. In our considerations, the stochastic model of the 
interest rate is directly embedded into the Monte Carlo simulations, as 
important part of a reliability analysis.

Additionally, it is given by the one-factor Vasicek model. There-
fore, such a yield can be better adjusted to real life data (e.g. estimated 
using statistical methods), especially if a long time horizon is consid-
ered. Also other, more complex models of the interest rate process can 
be directly used in the general approach presented in this paper. To the 
best knowledge of the author, an incorporation of a stochastic model 
of the yield is not considered in other papers concerning the analysis 
of the WDS costs at all. Further, using the Monte Carlo simulations, 
we show that there are significant differences in the estimated output, 
if, instead of the stochastic model, more classical approaches (like a 
constant yield) are taken into account. It means that, if we ignore a 
stochastic nature of the yield (which, of course, can not be constant 
all the time), some significant error is introduced into our analysis of 
the costs.

Additionally, in many of the papers, only one source of an uncer-
tainty is modelled, i.e., some random process describes a behaviour 
of a WDS, e.g. the times of its defaults. However, there are other pos-
sible sources of uncertainties, which can be related to an incorporation 
of the experts’ knowledge. Therefore, in our setting, the parameters of 
the model are described by fuzzy numbers. It means, that they are not 
completely precise (i.e., “crisp”) but they are, in some way, uncertain 
(“near to / about”). Such an idea is close to the real life, because, e.g., 
an unconditional time of a replacement of a pipe is rather “about 5 
years”, than strictly “always and only 5 years and not one day more 
/ less”.
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In this paper, the costs of the services are related to a set of pos-
sible states of the single connection. These states reflect various types 
of quality and degradation of the pipeline and its current behaviour 
(i.e. if it operates). We assume that the random transitions between the 
states of the single connection form a semi-Markov process. These 
transitions are also influenced by a deterministic, unconditional re-
placement age, which can be part of a maintenance routine.

The connections in the WDS can be grouped by their types, de-
pending on various technical properties (like quality, size etc.), which 
leads to different sets of statistical and reliability parameters. Then, 
the present value of the future possible costs of the maintenance serv-
ices is estimated using Monte Carlo simulations for the whole WDS, 
which consists of the mentioned groups. Apart from the estimator of 
the present value, other statistical measures related to the repairs and 
the replacements, as well as their costs, can be also directly obtained 
using simulations. These measures can be an important input for the 
reliability analysis of the WDS.

This paper can be seen as an important step in generalization of 
the approach proposed in [26]. The currently presented contribution 
is fourfold. Firstly, as it was previously mentioned, instead of the 
constant yield, the interest rate is modelled using a stochastic proc-
ess. The Monte Carlo simulations of trajectories of this process are 
directly embedded into a procedure of generation of the costs of the 
services of the whole WDS. The stochastic model allows us for a bet-
ter adjustment of the yield to the real life data and to minimise the 
possible error related to an assumption of the constant yield. This is 
very important for the practitioners in a proper estimation of the future 
maintenance costs. Secondly, instead of a classical Markov process 
with a discrete state space, the semi-Markov process of the transi-
tions between the states, with the introduction of the deterministic, un-
conditional replacement age, is proposed. It allows us to apply other 
random distributions for the transitions, not only the exponential one. 
Thirdly, we enrich our model introducing fuzzification of some pa-
rameters of each connection in the WDS, like the costs of the services 
and the intensities of the transitions. This fuzzification reflects the 
uncertainty observed in real life data, which can be overcome with 
the experts’ knowledge. It allows us, to some extent, to measure “an 
error” produced by these uncertain parameters, because a simulated 
output forms also a fuzzy number. This is important for a maintenance 
analysis, because it leads to a better estimation of the future, uncertain 
costs. Fourthly, apart from the Monte Carlo simulations of the WDS 
for the crisp case, some examples of the analysis of the WDS, if the 
parameters are given by fuzzy triangular numbers, are presented. It 
should be mentioned, that other types of L-R fuzzy numbers can be 
also directly applied for the considered approach.

This paper is organized as follows. In Section 2, the model of 
the WDS is proposed. In this part, the set of connections, the model 
of the maintenance costs related to repairs and replacements, as well 
as the one-factor Vasicek model are presented. In Section 3, a Monte 
Carlo approach is used to simulate a behaviour of the WDS, if all of 
the considered parameters are crisp. Apart from the description of the 
relevant algorithm, some examples of various settings are analysed. 
Section 4 is devoted to the problem of fuzzification of the param-
eters of the model. Firstly, some definitions and necessary symbols 
are introduced. Then, various examples of the output for the fuzzy 
environment, which are based also on the Monte Carlo simulations, 
are discussed.

2. Model of WDS

Let us suppose that the considered WDS is modelled by a graph 
of connections G. In this graph, each connection (i.e. a pipeline which 
is a part of the whole WDS) is represented as an edge, and possible 
sources or outflows are denoted by nodes. In practice, various types of 

nodes are possible, e.g., intake points (sources), supply points (sinks), 
branching nodes (see, e.g., [18] for a more detailed discussion).

2.1.	 States of the connection

In the following, we focus only on the edges of the graph G, i.e. 
the connections of the considered WDS. We assume that the state of 
each connection for a given time t can be described by one of the 
possible states from a set S={0,1,2,3,4}. These numbered states are 
related to the various types of quality of this pipeline (which depends 
on its degradation and the probability of possible malfunction) and 
its current behaviour (i.e., if this connection operates or not). In this 
way we have:

State 0––  The considered section of WDS is under replacement 
now, because it is completely broken, so it does not work.
State 1––  The section is under repair, because of its temporary 
malfunction, and it can not be used now.
State 2––  The section works and can be described as to be in a 
burn-in phase, when some initial defects just after starting this 
part (as a new one) are possible.
State 3––  The section operates and it is in its normal operations 
state (or a standard state), because the previous period of oc-
currence of some initial failures has ended.
State 4––  The section works, but a wear-out period after the nor-
mal operations state has been reached, so this part of the WDS 
may fail with higher probability due to deteriorating stresses 
from its previous lifetime.

Some of the considered states, namely burn-in, normal operations 
and wear-out phases, are described in a more detailed way in [4]. The 
quality of a pipeline can be also modelled using other approaches, 
see, e.g., [7, 17, 25, 28, 29]. However, the presented setting is more 
flexible, because it allows for an introduction of more than the five 
considered states. Therefore, the quality of a pipeline can be modelled 
even in a more complex way, if it is necessary for some practical pur-
poses. Additionally, the parameters of each state can be statistically 
estimated independently of other states.

Our main aim is to analyse the state of the j-th connection at the 
time t, which is defined by a process of the state of the connection  

S tj( ) ( ). From our previous assumption, we get S tj( ) ( )∈{ }0 1 2 3 4, , , ,  , 
i.e. for any time t, the state of the j-th connection is described by some 
state from the set S.

Then, S j( ) ( )0  is a starting state for the j-th connection, i.e., 
the state of the pipe during initialization of the whole algorithm (or 
estimation procedure, equivalently). The behaviour of the process 

S tj( ) ( ) for the fixed j is described by random sequences L Lj j
1 2
( ) ( ) …, ,

and S Sj j
1 2
( ) ( ), , . Variables in the first sequence are periods between 

the moments when the j-th connection enters into some state and then 
leaves this state in order to proceed to another state. The second se-
quence describes the consecutive states for the j-th connection at the 
moments L L Lj j j

1 1 2
( ) ( ) ( )+ …, , .

We assume that the process formed by S L Li
j j

i
j

i

( ) ( ) ( )+…+( ), 1  is 
a Markov renewal process. Then, straightforwardly,

	 N t L L tj

n

j
n

j( ) ( ) ( )( ) = +…+ ≤{ }max 1

is a Markov renewal counting process (i.e., the number of the transi-

tions between the states in our case) and S t Sj
N t

j
j

( )
( )

( )( ) = ( )  is a semi-
Markov process.

Additionally, we assume that for every i,j the processes S ti( ) ( )
and S tj( ) ( ) are independent of each other in probabilistic sense. From 
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the practical point of view, it means that there is no “information 
flow” between the connections and that the state of one part does not 
depend on the condition of other pipeline.

If for any j, L Lj j
1 2
( ) ( ) …, ,  are iid random variables distributed 

according to the exponential distribution, then the process S tj( ) ( )  
directly reduces to a Markov chain with continuous time t and the 
discrete finite state space S (see, e.g., [22]). However, due to next as-
sumptions and incorporation of the fuzzy approach, such a simplifica-
tion is not relevant for the case discussed in this paper.

Let R j( )  denotes the deterministic and unconditional replace-
ment age (i.e. the planned replacement). It means that when the length 
of period after the last replacement of the j-th connection surpasses 
R j( ) , then this pipeline is always replaced regardless of its previous 
history (see also [19]). Mathematically, we calculate:

	 R t t S t S t for t t tj

t t

j j
* max : , ( , ]( )

≤ ≤

( ) ( )= − ( ) = ( ) ≠ ∈{ }
0

2 1 1 1 2
1 2

0 0   (1)

and when R Rj j
* ,( ) ( )≥  the process S tj( ) ( )  immediately changes its 

value to the state 0 (i.e. under replacement).
It is easily seen, that if the deterministic transitions given by 

R j( )  are not taken into account, the behaviour of the process 
S tj( ) ( ) is completely described by the Markov renewal process 

S L Li
j j

i
j( ) ( ) ( )+…+( ), .1  In order to conduct the simulations, the tran-

sition probabilities:

	 Q t Pr S t l L t S t kkl
j

n
j

n
j

n
j( )

+
( )

+
( ) ( )( ) = ( ) = ≤ ( ) =( )1 1, | 	 (2)

i.e. the distribution of the time t of the transition from the state k to 
the state l for each connection j, should be set. In the following we 
assume that:

	 Q Xkl
j

l S kl
j( )

∈

( )= { }min , 	 (3)

where X Xk
j

k
j

0 4
( ) ( )…, ,  are independent random variables and each 

Xkl
j( )  is given by the exponential distribution with the intensity λkl

j( ) ,  

i.e. X Expkl kl
j∼ ( )( )λ . It means that the distribution of Qkl

j( )  is given 

by the minimum of random times of transitions from the state k to 
each other possible state. In the case of the exponential distribution, 
the formula (3) is consistent with a classical stochastic approach, i.e. 
with the previously mentioned Markov chain. However, in practical 
applications other kinds of distributions could be also used to model 

the random variables X Xk
j

k
j

0 4
( ) ( )…, , , like, e.g., some lognormal distri-

bution. Especially, the formula (3) leads directly to the method which 
can be applied in numerical simulations of the transitions between the 
states even in the fuzzy case considered in Section 4.

If we restrict ourselves to the exponential distributions for 

Xkl
j

k l S

( )
∈

{ }
,

 for the fixed connection j, then we have an intensity ma-

trix:

	 Λ j
kl

j

k l S

( ) ( )
∈

= ( )λ
,

 

In practice, the values in ( )jΛ  should be estimated from real-life 
observations. In order to do this, we should note, that a mean sojourn 
time for the state k is given by:

	 τ
λ

k
j

l k kl
j

( )

≠
( )=

∑
1

 	 (4)

and a one-step probability of the transition between the states k and l 
is equal to:

	 Pr Qkl
j

kl
j kl

j

m k km
j

( ) ( )
( )

≠
( )= ∞( ) =

∑
λ

λ
	 (5)

Then, using a set of equations based on (4) and (5) for all of the states, 
it is possible to set values of the intensities in the intensity matrix 
calibrated to our observations. For example, τ1

j( )  is a mean time for a 

repairing procedure, τ2
j( )  is a mean time, when a pipe is in its burn-in 

phase, Pr j
12
( )  is a probability, that a pipe is repaired in such a way, that 

it can be treated to be in the burn-in phase afterwards etc. Of course, 
this procedure may require some additional experts’ knowledge (e.g. 
about a mean time for the burn-in phase). However, this requirement 
directly coincidences with an introduction of a fuzzy approach de-
scribed in Section 4.

If, instead of the exponential distributions, other kinds of densities 
are considered, the equations similar to (4) and (5) can be also used. 
We have (see, e.g., [13])

	 τk
j

l k
kl

jF t dt( ) ∞

≠

( )= − ( )( )∫∏
0

1 ,

where ( )( )j
klF t  is a cdf of the time spent in the state k and associated 

with the transition from k to l, and 

	 Q t F x dF xkl
j

t

m k
km

j
kl

j( )

≠

( ) ( )( ) = − ( )( ) ( )∫ ∏
0

1

for a relevant kernel matrix. These integrals can be analytically intrac-
table for more complex distributions, but it is still possible to calibrate 
the necessary parameters for the assumed densities even in practical 
applications (see, e.g., [13] for a more detailed discussion and some 
examples).

As it was previously mentioned, in the case of the set S considered 
in this paper, only some transitions between the states are possible. 

Therefore, only some intensities λkl
j( ) ,  related to the exponential dis-

tributions are not equal to zero. So, the intensity matrix has the form 

	 ( )

0 0  X  0  0 
0 0  X  X  X 
X  X  0  X  0
X X  0  0  X 
X X  0  0  0

j

 
 
 
 Λ =
 
 
 
 

	 (6)

where X denotes a non-zero entry. Rows and columns of the matrix (6) 
are numbered in the same way as the states from the set S, i.e. from 0 
up to 4. For example, λ02

j( )   corresponds to the intensity of replace-
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ment of the broken part by a new one, which begins its work in the 

burn-in phase afterwards, and λ30
j( )  describes the intensity of break-

ing down with a necessary replacement as its consequence, if this con-
nection was in its normal operations state previously.

Additionally, from the description of the states, we assume that:

	
λ λ λ λ20 30 40 30

j j j j( ) ( ) ( ) ( )> >,

and:

	
λ λ λ λ21 31 41 31

j j j j( ) ( ) ( ) ( )> >,
	

These inequalities reflect the fact that the burn-in and wear-out 
states have greater intensities of both replacements and repairs than 
the normal operations phase, as stated previously.

During the Monte Carlo simulations considered in this paper, the 
process of the state of the connection S tj( ) ( ) is, in addition, modified 
by the instantaneous transitions caused by the relevant value of 
R j( )  .

In the following we assume that all of the connections could be 
grouped in K groups by their types which depend on various technical 
data for the pipes, e.g., their dimensions, a kind of material which is 
used etc. (see, e.g., [3] for additional details). Straightforwardly, these 
types are related to different intensity matrices and, e.g., values of the 
starting states and unconditional replacement ages.

2.2.	 Model of maintenance costs

Based on the model described in Section 2.1, the Monte Carlo ap-
proach can be applied to simulate a trajectory of the process S tj( ) ( )for 
each connection j, and then, in a similar way, to generate a behaviour 
of the whole WDS. The lengths of the periods between the transitions 
are part of such an output and the times of entries to the states 0 or 1 
(i.e. the necessity of replacement / repair of some part) can be directly 
calculated. In the following, these times are denoted by t1,t2,….

In this paper we focus only on the maintenance costs related to 
replacements and repairs. Of course, other types of costs (like costs of 
water losses, loss of revenues etc. – see, e.g., [4]) can be also incorpo-
rated into the considered numerical model.

We assume that the mentioned costs depend on the type of mainte-
nance service (i.e., if replacement or repair of some part is necessary), 
the length of this service and the type of the connection. Therefore 
we have:

	 c j
i const

j
var

jt c c( ) ( ) ( )( ) = + 	 (7)

where c j
it

( ) ( )  denotes a total sum of costs for the given j-th con-

nection and the moment ti of starting the necessary service, cconst
j( )  is 

some constant value independent of the length of the maintenance, i.e. 
it is a fixed cost, and cvar

j( )  denotes a variable cost, i.e. a value which 
depends on the length of this service.

It is possible to apply various approaches for calculation of the 
variable costs using the Monte Carlo simulations. For example, these 
costs may be directly related to the length of period of the labour 
(and then strictly deterministic), or modelled by an additional random 
distribution which depends on the mentioned length, the type of con-
nection and other parameters (which directly leads to a random value 
of the payment).

2.3.	 Model of interest rates

In the considered setting we assume that the value of money de-
pends on time, i.e. we apply the concept of the present value, which is 
widely known in financial mathematics (see, e.g. [5, 27]). Such a set-
up is especially useful if we are interested in the long time horizon 
T   (e.g., 10–20 years) for which the estimated costs of the mainte-
nance services should be found. Then, the values evaluated for differ-
ent scenarios can be compared for now (i.e. when t=0). These sce-
narios can be directly related to various possible decisions (e.g., 
different values of R j( )), so they lead to a selection of the best deci-
sion if the financial risk is taken into account.

In the following, we evaluate the present value of the total sum of 
the costs of repairs and replacements PV(c), which is given by:

	 PV c PV t
i j

j
i( ) = ( )( )∑ ( )

,
c 	 (8)

In order to calculate (8), the relevant model of the interest rate 

should be used to find the discounting factor PV(.) for each c j
it

( ) ( ) . 
There are many such models known in financial mathematics (see, 
e.g., [5]), but in this paper we focus on the one-factor Vasicek model 
described by the formula:

	 dr a b r dWt t t= −( ) +σ , 	 (9)

where rt is a value of the interest rate at time t, Wt is the  standard 
Brownian motion, and a, b, σ are parameters of this model. Moreo-
ver, b characterizes a long term mean level (i.e. the trajectory of rt is 
directed to this value during its long run), a reflects a speed of rever-
sion towards b, and σ is an instantaneous volatility (variability) of 
the trajectory introduced by the random component of the Brownian 
motion.

In our setting, the model of the interest rate is directly embedded 
into the Monte Carlo simulations, as explained in Section 3. There-
fore, it is necessary to apply the relevant iterative scheme for genera-
tion of increments Δrt and the discounting factor. In the case of the 
model (9), such a scheme (see, e.g., [5] for more details) is based on 
evaluation of rt at the fixed moments 0 0 1= < <…<t t tn , using the 

formula:

r exp a t t r b exp a t t
exp a t

t i i t i ii i+
= − −( )( ) + − − −( )( )( ) + − −

+ +1 1 11
1 2

σ ii i
i

t
a

Z+ −( )( )1

2
,

where Z Z Zn1 2, , ,…  are iid samples from N(0,1). Then, the cdf of 
1itr +

 

for the given value of rti  is equal to:

r N exp a t t r b exp a t t
exp

t i i t i ii i+
∼ − −( )( ) + − − −( )( )( ) − −

+ +1 1 1
21

1 2
,σ

aa t t
a

i i+ −( )( )











1

2

(10)

In the same way, the factor:

	 ( )
1

1,
i

i i i

t
st t tfv r ds+

+
= ∫ , 

which is necessary to evaluate the present value, can be found. 
The cdf of fv ti0 1, +( )  for the given fv ti0,( )  and rti  (see, e.g., [5]) is 
equal to:
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fv N fv
a

exp a t t r b
a

exp a tt t i i t ii i i0 0 1 11

1 1, ,+( ) ( ) + +∼ + − − −( )( )( ) + − −−( )( ) + −( ) −( ) −( ) + − − −( )+ + +t a t t
a

t t
a

exp a t ti i i i i i i1

2

2 1 11 1
2

1 2,σ (( )( ) + − −( )( ) −( )















+

2 11a
exp a t ti i .

fv N fv
a

exp a t t r b
a

exp a tt t i i t ii i i0 0 1 11

1 1, ,+( ) ( ) + +∼ + − − −( )( )( ) + − −−( )( ) + −( ) −( ) −( ) + − − −( )+ + +t a t t
a

t t
a

exp a t ti i i i i i i1

2

2 1 11 1
2

1 2,σ (( )( ) + − −( )( ) −( )















+

2 11a
exp a t ti i .

(11)

The conditional covariance inside the pair r fvt ti i+ +( )( )1 10, ,  for the 

fixed value of r fvt ti i
, ,0( )( )  is equal to:

	 σ 2

1 12
1 2 2

a
exp a t t exp a t ti i i i+ − −( )( ) − − −( )( )( )+ + .

2.4.	 Parameters of the model

Taking into account our previous considerations, the parameters 
of the whole model can be divided into two groups:

Parameters of the given type 1.	 k=1,…,K of the connection re-
lated to its reliability and its maintenance costs: S k( ) ( )0  – the 
starting state of the connection, R k( )  – the unconditional re-

placement age, ( )kΛ  – the intensity matrix, cconst rpl
k

,
( )  – the fixed 

costs ( cconst rpl
k

,
( )  for the replacement and cconst rpr

k
,

( )  for the re-

pair), cvar
k( )  – the variable costs ( cvar rpl

k
,

( )  – for the replacement, 

cvar rpr
k

,
( )  – for the repair), nk – the number of the connections 

of this type.
Parameters of the interest rate model related to the financial 2.	
setup: a – the speed of reversion, b – the long term mean level, 
σ – the instantaneous volatility.

3. Simulations – the crisp case

In this part we assume that all of the parameters mentioned in Sec-
tion 2.4 are given by crisp values (i.e. real numbers). Because of this 
assumption, the relevant algorithm for simulation of the behaviour 
of the WDS and the interest rates is more straightforward than in the 
fuzzy case considered in Section 4.

3.1.	 Algorithm

In order to calculate the present value of the maintenance costs 
and other output which is useful for the reliability and maintenance 
analysis (see Section 3.2 for some examples), the three main phases 
of the algorithm should be repeated n times, where n is an overall 
number of simulations (see Appendix, Algorithm 1).

During the first phase, the relevant Markov renewal process is 
simulated using the random transition probabilities given by 
(2) (in the general case) or (3) (for the exponential distribution 
considered further on in this paper). Additionally, the condi-
tion (1) should be checked and, if R Rj j

*
( ) ( )≥ , the state of the 

connection is deterministically set to 0. Then, all of the tran-
sitions to the states 0 or 1 for each trajectory are found and 
the relevant times and periods of the maintenance services are 
calculated for these events. It leads us to an evaluation of  the 
nominal total sums of the costs for each generated time of the 
necessary service using the formula (7).

In the second phase, the iterative schemes (10) for rt and 
(11) for fv t0,( )  are used to generate the trajectory of the in-
terest rate process  (9), and, simultaneously, the discounting 
factor. During this Monte Carlo step, the ordered times of the 

transitions to the states 0 or 1 of all of the trajectories simulated in the 
first phase are taken into account.

In the third phase, the estimator of the total discounted costs of the 
maintenance services is calculated.

3.2.	 Examples of analysis

In each of the following examples n = 1 000 000 simulations are 
conducted.

3.2.1.	 Example I

In the following, for illustration purposes, i.e. to validate a correct-
ness of the introduced algorithms and to present possible outcomes, 
we use artificial parameters for the considered WDS. However, some 
of them were obtained from an oral communication with the experts. 
Let us assume that only one type of the pipeline is considered and it is 
described by the parameters:

S R c c cconst rpl const rpr var rpl
1 1 1 1 10 2 5 5 4( ) ( ) ( ) ( )( ) = = = =, , , ,, , ,

(( ) ( )= = =3 2 201
1, ,,c nvar rpr

(12)

Additionally, the intensity matrix of the transitions is given by:

	 ( )1

0 0 12 0 0
0 0 24 26 0

0.5 1 0 1 0
0.4 0.9 0 0 0.3
0.6 1.1 0 0 0

 
 
 
 =
 
 




Λ




	 (13)

and the unit of time can be identified with one year. Therefore an aver-
age time which is necessary for complete replacement of the broken 
connection is about one month, an average time of repair (if then the 
burn-in phase is achieved) is half of this time, the unconditional re-
placement age is equal to five years etc. Of course, in practical appli-
cations the relevant parameters of the considered connections should 
be estimated from real data (or based on the experts’ opinions), as 
noted in Section 2.1.

For the interest rate model it is assumed that:

	 a=0.1,b=0.05,r0=0.04,σ=0.001	 (14)

and we are interested in a rather long twenty years time horizon of the 
financial analysis of the maintenance costs (i.e., T=20).

After using the Monte Carlo simulations, the following es-
timators are found: xrpr = 360 597.  (an average number of re-
pairs), xrpl =190 164.  (an average number of replacements), 

Table 1.	 Exemplary estimators from Example I

Minimum Q1 Mean Q3

Times of repairs 5.58913e-11 0.00574441 0.0199603 0.0276658

Times of replacements 3.55271e-15 0.0238704 0.0829755 0.115023  

Costs of repairs 4 4.01149 4.03992 4.05533

Costs of replacements 5 5.07161 5.24893 5.34507  

Maximum Stand. dev.

Times of repairs 0.333829 0.0199602

Times of replacements 1.64975 0.0829587

Costs of repairs 4.66766 0.0399203

Costs of replacements 9.94925 0.248876
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xrpl R, .=18 1029  (an average number of the unconditional, 
planned replacements), xrpl NR, .=172 061  (an average number 
of the replacements without the planned ones, i.e. the not 
planned replacements) and PV c( ) =1629 2.  (the discounted 
value of the maintenance costs) for the whole considered pe-
riod. Some other useful estimators of times and costs can be 
also directly found from the same sample (see Table 1 for some 
examples).

The obtained estimator of the discounted value of the main-
tenance costs for the Vasicek model PV(c) can be directly com-
pared with the similar values for more classical approaches – a 
nominal value of the cash flow (denoted further by PVnomin (c)) 
and the model with the constant yield r (denoted by PVconst (c)). 
Using the respectively modified Monte Carlo approach, we 
get PVnomin (c)=2454.9 and PVconst (c)=1547.42. In this second 
model, r = 0.05 is set, which is equal to the long term mean level 
b for the Vasicek model given by (14). The relative differences 
between the outputs from these models are rather significant 
– about 50.6813%, if we compare the nominal approach with 
the Vasicek model, and about −5.01964%, if the constant yield 
is taken into account. Therefore, a selection of the appropriate 
interest rate model seems to be an important step in a decision 
making process.

3.2.2.	 Example II

The considered Monte Carlo approach could be also useful 
for decision makers to examine an influence of various param-
eters or scenarios on the estimated output like the costs of main-
tenance services or the reliability statistics. For example, from 
the previous analysis the average number of the unconditional 
replacements may be seen as too high, so one may be tempted 
to increase the unconditional replacement age and set the higher 
value of R(1). Of course, such an action could have undesirable 
effect in the long-time horizon and, if R(1) is set too high, then 
also the number of “usual” (i.e. not planned) replacements or 
repairs caused by deterioration processes may increase. But the 
simulations, similar to the previously described ones, can be 
directly used to support the process of taking appropriate deci-
sions.

For example, for the parameters considered in our set-
ting, such a course is desirable, because for R(1)=10 we have 
xrpr = 361 715.  , which is similar to the value from the previous 

case (but now this average is also higher, the relative difference 
is about 0.310041%), xrpl =173 847.  is significantly lower val-
ue, xrpl R, .=1 2931  is only 7.14% of the previous average of 
number of the unconditional replacements, xrpl NR, .=172 554  
(which is similar to the previous case, but once again the 
relative difference is positive and equal to 0.286468%), and 
the total discounted value of the cash flow is also reduced to 
PV(c)=1578.87.

A similar analysis can be done also for a whole interval 
of the possible values of R(1). Figure 1 presents the relation 
between the unconditional replacement age and PV(c), in the 
similar way as in Example I, for different models of the interest 
rate: the Vasicek model (circles), the constant rate (squares) and the 
nominal value (rhombuses). All of these present values are exponen-
tially decreasing functions, but the differences between them are, once 
again, significant. 

The similar analysis can be done also for other values, which are 
very important for the practitioners and the decision makers, like the 
average number of repairs xrpr  (see Figure 2) and the average number 
of not planned replacements xrpl NR,  (see Figure 3). In the both cases, 

the average number of services is a slowly increasing function of R(1) 
for the given set of the parameters.

4. Fuzzification of the parameters

As it is known, some sources of uncertainty may be easily mod-
elled by the fuzzy approach (see, e.g., [6]). In such a case the value 
of some uncertain parameter is based on expert’s knowledge. This 
approach is especially very important when data is sparse and vari-
ous data analysis methods, like statistics, are not usable or even not 

Fig. 1.	 Graph of relation between R(1) and PV(c) from Example II

Fig. 2.	 Graph of relation between R(1) and xrpr = 361 715. from Example II

Fig. 3.	 Graph of relation between R(1) and xrpl NR, .=172 554 from Example II
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possible. Then, based on opinions of the experts, the necessary param-
eters of the model can be evaluated. However, usually these opinions 
have not completely precise form (e.g. like real numbers), they are 
rather stated as “the value of this parameter is about 5”, so they can 
be transformed into special form, known as fuzzy numbers. The fuzzy 
numbers are also used during making statistical decisions (see, e.g., 
[9] for an example of application to some reliability data).

In the following, we assume that some of the parameters describ-
ing the considered type of the connection (enlisted in Section 2.4) 
are fuzzified. Such an assumption requires different Monte Carlo ap-
proach than in the crisp case, therefore new, relevant algorithm is dis-
cussed in Section 4.2. A comparison of the Monte Carlo simulations 
of crisp and fuzzy random numbers can be found, e.g., in [8].

For example, the planned replacement age R(j) is treated further 
as a fuzzy number. Theoretically, such a parameter is completely de-
terministic and crisp value, e.g. we may say “R(1) is equal to 5 years”. 
However, in the practical cases, this value is not completely exact and 
crisp and it is rather “about 5 years plus / minus a few days / months”, 
which is caused by a temporary lack of funds for the given period, 
urgent and more important repairs in other areas just in the given mo-
ment (hence, lack of the experienced staff at that time), problems with 
preparing plans for the traffic exactly in the given date (like busy work-
ing day) etc. Therefore, the introduced fuzziness has practical basis.

However, some quantitative information about the planned re-
placement age or other parameter is still required. Let us assume, that 
the experts express their opinions. These sentences can have, e.g., a 
form of linguistic variables (like “a time of a planned replacement is 
rather later than sooner”). But in the setting considered in this paper, 
it is necessary to “translate” them  into relevant sets of real numbers 
with membership functions, i.e. fuzzy numbers (see, e.g., [30]). Then, 
these numbers, which have to satisfy some additional requirements 
about a monotonicity of their membership functions (like L-R num-
bers), are used during simulations in order to evaluate a fuzzy output, 
e.g., fuzzy maintenance costs. Applying such a procedure, we gain 
an additional knowledge about a dependency between the uncertain 
(fuzzy) parameters (i.e. the experts’ opinions) and a simulated (uncer-
tain) outcome (i.e. conclusions, which are important for our manage-
ment decisions). It means, that a level of the uncertainty in the input 
is directly reflected in the uncertainty of the output and can be also 
easily measured. For example, a difference between the fuzzy mainte-
nance costs for two scenarios – “the planned replacement age is equal 
to 5 years plus / minus a half of the year” and “the planned replace-
ment age is equal to 4.5 years plus / minus a half of the year” – can be 
exactly seen and measured, and a relevant decision can be taken.

It should be also noted, that an incorporation of the fuzzy variables 
is related to a different type of uncertainty, than one modelled by proba-
bilistic approaches. Then, we enrich our model in a significant way.

4.1.	 Preliminaries

Now we present basic definitions and notation concerning the 
fuzzy approach, which will be used in the further part of the paper. 
Additional details can be found in, e.g., [14].

For a fuzzy subset A  of the set of real numbers R we denote by 
µ
A  its membership function µ

A R: ,→[ ]0 1  and by 




A x xα µ αµ[ ] = ( ) ≥{ }:  the α-level set of A  for α ∈ ( , ]0 1 . Then 

A  [0] is the closure of the set x xA: µ


( ) >{ }0 .
A fuzzy number a  is a fuzzy subset of R for which µ

A  is a nor-
mal, upper-semicontinuous, fuzzy convex function with a compact 
support. Then for each α∈[0,1], the α-level set a[α] is a closed inter-
val of the form a[α]=[ aL [α], a U [α] ], where a L [α], aU [α]∈R and 
aL [α] ≤  aU [α].

If +,−,⋅,/ is an operator for the fuzzy numbers (related to the equiva-
lent operator +,−,⋅,/ in the crisp case), then for the fuzzy numbers a ̃,b ̃, their 

outcome is also a fuzzy number. Using α-cuts and the interval arithmetic 
we have:
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if b ̃[α] does not contain zero for all α∈[0,1] in the last case.
A fuzzy number a ̃is called positive (a ̃≥0) if µ

a x( ) = 0  for x<0 
and it is called strictly positive (a ̃>0) if µ

a x( ) = 0 for x≤0.
An L-R fuzzy number is a fuzzy number with the membership 

function of the form:
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where L,R:[0,1]→[0,1] are non-decreasing functions such that L(0)= 
R(0)=0 and L(1)=R(1) = 1.

A triangular fuzzy number, denoted further by [a,b,c], is a L-R 
number with the membership function of the form:
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In the following, to approximate a desired fuzzy output f ̃, we 
check monotonicity of the underlying function f(x), when all of the 
parameters of the whole model, except of the single argument x, are 
held fixed. 

The same idea, related to the extension principle, applies also for 
λ ̃>0 given by a L-R fuzzy number, where λ ̃ is the fuzzy intensity pa-
rameter of the exponential probability density function. Therefore, if 
f(λ) is an increasing function, then for the given α, the left end point f ̃L 
[α] is approximated using the crisp value λ ̃L [α] as the intensity of the 
exponential random variables generated in Monte Carlo simulations. 
In the same way λ Ũ [α] is used to approximate f Ũ [α] (see also, e.g., 
[2, 23, 24]).

4.2. Simulations in the fuzzified environment

We assume that the parameters of each type of the connection, 
namely R k( ) , Λ( )k , cconst rpl

k
,

( ) , cconst rpr
k

,
( ) , cvar rpl

k
,

( ) , cvar rpr
k

,
( )  for 

k=1,…,K, are given by L-R numbers. Therefore in the following they 
are denoted by R k( ) , Λ( )k  etc. Then for the intensity matrix of the 
transitions we have  Λ( ) ( )

,
k

kl
j

k l S
= ( )

∈
λ , i.e. such a matrix consists of 
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five rows and five columns of positive fuzzy numbers and the pattern 
of strictly positive entries is the same as for (6).

Using the Monte Carlo simulations, the output similar to the one 
discussed in Section 3.2 is then obtained. But now these values, like 
the discounted value of the maintenance costs, are given by fuzzy 
numbers, so notation like PV c ( )  will be used further.

The fuzzy output is approximated by α-level sets PV c ( )[ ]α  eval-
uated using Algorithm 2 (see Appendix). Firstly, we should decide if 
the left or right end points of PV c ( )  should be estimated during the 
simulations. Then a binary variable left=1 or left=0 is set, respectively. 
The other parameters are: a starting value α ∈ ( , ]0 1 , an upper bound 
α α1 0 1∈ ( , ]  and an increment Δα>0.

In the first phase, for the given α, the relevant α-level cuts of the 
fuzzy parameters for all types of connections are found. Based on the 
monotonicity of PV(c), for each possible fuzzified argument and the 
fixed value of left, the left or right end point of the α-level cut of each 
parameter is then selected.

During the second step, the simulations of the whole WDS are 
conducted using Algorithm 1 (see Appendix). The generated crisp 
output PV(c) is approximation of PV cL ( )[ ]α or PV cU ( )[ ]α  depend-
ing on the value of left.

To obtain the mentioned approximation of the whole fuzzy output, 
the value of α in the above procedure is gradually set to subsequent 
values, starting from α0 up to α1 with the given increment Δα. After 
evaluation of the left end points of PV(c) (for left=1), the right end 
points are found in the same manner (i.e. left=0 is applied). Then the 
obtained intervals are putting on one another to form the approximat-
ed fuzzy number.

The above method is based on the extension principle introduced 
by Zadeh (see [31]) and a similar approach using α-level cuts is also 
applied in financial mathematics for pricing of the derivatives (see, 
e.g., [23, 24]), in optimization of queuing systems (see, e.g., [2]) etc.

Because the considered function for the fuzzy result (e.g. 
PV c ( )  is not given by an exact, analytical formulae, the simu-
lations are required for its evaluation. As previously mentioned, 
it should be determined for each of the fuzzy parameter, if the 
left or the right end point of its α-level cut is used to calculate 
the left or right end point of the output interval during the first 
step of the above procedure. This choice is strictly related to 
the monotonicity of a function f(p) of the considered outcome, 
i.e. if the output (like the discounted maintenance costs) is an 
increasing or decreasing function of the given parameter p (like 
the constant costs of repair). In Algorithm 2 (see Appendix) 
the considered approach is applied for PV c ( ) , but the same 
method can be used for other output functions f(.), which are 
important from the practical point of view.

4.2.1. Example III

For simplicity, in the following, we assume that the fuzzy 
parameters of the considered single type of the connection are 
given by some triangular numbers. However, other types of L-R 
numbers can be also directly used in our approach. Let us start 
from the set of the parameters:

  c c cconst rpl const rpr var rpl, , ,, , , , , ,1 1 14 5 6 3 4 5( ) ( ) ( )= [ ] = [ ] == [ ] = [ ]( )2 3 4 1 2 31, , , , , .,cvar rpr

(15)

Other parameters are the same as in Section 3.2.1. It is easily seen 
from (15), that only the constant and variable costs of repairs and 
replacements are strictly fuzzy triangular numbers in the considered 
case. Therefore, they are the only source of uncertainty in the follow-
ing example.

Using the Monte Carlo approach described by Algorithm 2, the 
fuzzy discounted maintenance costs PV c ( )  for the Vasicek model 
(see Figure 4, circles) and the fuzzy average of the nominal costs of 
replacements crpl  (see Figure 5) are approximated. The obtained 
fuzzy values are almost triangular symmetrical fuzzy numbers for 
which the 1-level cut sets are equal to the output estimated in Section 
3.2.2. Some approximated values of the intervals for different α can 
be found in Table 2.

Both PV c ( )  and crpl  are increasing functions of the fuzzy pa-
rameters (15). Therefore, to calculate the left end point of the interval 
PV cL ( )[ ]α  (or the right end point PV cU ( )[ ]α , respectively) for the 
given value of α, only the left end points (or the right points) of the 
α-level cuts for (15) should be considered. The same applies for crpl .

Using the Monte Carlo simulations, the present values of the 
maintenance costs can be also found for the more classical models of 
the interest rates, i.e. the nominal costs (see Figure 4, squares) and the 
constant yield (see Figure 4, rhombus). The obtained approximations 
of the fuzzy numbers are similar in shape, but significantly different.

4.2.2.	 Example IV

Of course, not only the maintenance costs can be considered as 
uncertain values in the practical situations. Therefore we analyse situ-
ation if the unconditional replacement age is also given by a triangu-
lar, fuzzy number, denoted further by (1)R . Other fuzzy parameters 
(namely cconst rpl,

1( ) , 
cconst rpr,

1( ) , 
c rplvar,

1( ) , 
c rprvar,

1( ) ) are described by (15) 

and the crisp parameters are the same as in Section 3.2.1.
As previously, to approximate a desired fuzzy outcome, we should 

check the monotonicity of the considered function for the introduced 
fuzzy parameters. As noted in Section 4.2.1, PV(c) is an increasing 

Table 2.	 Exemplary α-level cuts of the fuzzy discounted maintenance costs 
PV c ( )  and the fuzzy average of the nominal costs of replacements 
crpl  from Example III

α PV c ( ) crpl

0 [1208.23, 1949.52] [4.16594, 6.33188]

0.1 [1245.29, 1912.46] [4.27424, 6.22358]

0.5 [1393.55, 1764.2] [4.70742, 5.79039]

0.9 [1541.81, 1615.94] [5.14061, 5.3572]

Fig. 4. Fuzzy discounted and nominal maintenance costs from Example III
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function of the costs, but the dependency on (1)R   is not so straight-
forward. It is possible, that for the higher values of (1)R , the overall 
maintenance costs will increase. However, for the considered values 
of the parameters, as emphasized by Figure 1, such a relation is a 
decreasing function. Therefore, to evaluate PV cL ( )[ ]α , the left end 
points of the α-level cuts of the fuzzy costs and the right end point 
of the α-level cut of (1)R  (given by (1) ([ ])UR α ) should be taken into 
account.

The obtained approximations of PV c ( )  are shown in Figure 6, 
where x axis is the present value of the maintenance costs, y axis is 
related to the triangular values (1)R  of the form y y y− +[ ]2 2, ,  and z 

axis is the relevant α-level cut. As it can be seen, the estimated fuzzy 
values are L-R fuzzy numbers for which the supports are wider, if y is 
higher in the formulae R y y y( ) , ,1 2 2= − +[ ] .

As in Example II, the fuzzy characterizations, which are impor-
tant for the practitioners, i.e. the average number of repairs xrpr  
(see Figure 7) and the average number of not planned replacements 

,rpl NRx  (see Figure 8) are also obtained. Then, the relevant outputs 
for (1)R  = [2,4,6] (Figures 7 and 8, circles) and (1)R  = [6,8,10] (Fig-
ures 7 and 8, squares) can be compared. As it can be seen, for the 
higher value of (1)R , the obtained L-R number is significantly shifted 
right with a shorter support.

4.2.3.  Example V

All of the parameters of the connections in the WDS (i.e. the first 
group mentioned in Section 2.4) can be fuzzified. Such an approach 
reflects various sources of uncertainties which results in the neces-
sary incorporation of the experts’ knowledge. Then, in the following 
example, apart from applying the fuzzy values:



 R c cconst rpl const rpr
1 1 18 10 12 4 5 6 3 4( ) ( ) ( )= [ ] = [ ] =, , , , , , , ,, , 55 2 3 4 1 2 31 1[ ] = [ ] = [ ]( ) ( ), , , , , ,, , c cvar rpl var rpr

(16)

also the intensity matrix of transitions ( )kΛ   is described by triangular 
fuzzy numbers, so that:

Λ 1

0 0 10 12 14 0 0
0 0 22 24 26 24 26 28 0

0 4 0 5 0 6 0( ) =

[ , , ]
[ , , ] [ , , ]

[ . , . , . ] [ .. , , . ] [ . , , . ]
[ . , . , . ] [ . , . , ] [ . , . ,

9 1 1 1 0 0 9 1 1 1 0
0 3 0 4 0 5 0 8 0 9 1 0 0 0 2 0 3 00 4
0 5 0 6 0 7 1 1 1 1 2 0 0 0

. ]
[ . , . , . ] [ , . , . ]

.























(17)

The fuzzy values, given by (17), describe only the fuzzy intensi-
ties of the exponential distributions of the transitions between 
the states from the set S, as discussed in Section 4.1. It is eas-
ily seen, that the fuzzy numbers (17) are “close” to the crisp 
values (13) assumed in Example I. Therefore, the fuzzy output 
obtained during current analysis can be easily compared with 
the values from the previously considered examples.

As previously mentioned, in order to evaluate the fuzzy out-
put, it is necessary to check the monotonicity of the function 
for the considered parameter. And PV(c) is a decreasing func-

tion of ( )1
02λ , ( )1

12λ  , ( )1
13λ , because for the higher values of these 

intensities, the expected time of replacement or repair is lower, 
so the final cost is also lower. All of the other parameters can be 
examined in the same way.

Fig. 5. Fuzzy average (nominal) costs of replacements from Example III

Fig. 6. Fuzzy discounted maintenance costs from Example IV

Fig. 7. Fuzzy approximation of the average number of repairs from Example IV

Fig. 8.	 Fuzzy approximation of the average number of not planned replacements 
from Example IV



Eksploatacja i Niezawodnosc – Maintenance and Reliability Vol.18, No. 4, 2016524

Science and Technology

The approximated fuzzy discounted maintenance costs, 
which are evaluated using the Monte Carlo simulations are also 
compared with the similar output obtained in Example III (see 
Figure 9). As it is seen, in the considered case PV c ( )  is a L-R 
fuzzy number, almost a triangular one, with a wider support 
comparing to the fuzzy number from Example III.

In a similar way, the fuzzy average (nominal) costs of re-
placements is approximated. In Figure 10, the obtained values 
are compared with the similar fuzzy output from Example III. 
Some of the evaluated intervals for different α can be found 
in Table 3.

As previously, the fuzzy approximations of the average 
number of repairs xrpr  (see Figure 11) and the average number 
of not planned replacements ,rpl NRx  (see Figure 12) are also 
obtained using the introduced approach. These fuzzy L-R num-
bers are almost triangular, but their supports are wider compar-
ing to the outputs from the examples, where the intensities are 
strictly crisp values.

5. Conclusions

In this paper the model of the transitions between the states 
of the single connection of the WDS is proposed. This model is 
related to a semi-Markov process and the deterministic jumps 
caused by the unconditional replacement age for each pipeline. 
Using the Monte Carlo approach, the behaviour of the whole 
WDS is simulated and the costs of the maintenance services (i.e. 
repairs and replacements) are evaluated. Then, based on a sto-
chastic process (the one-factor Vasicek model of interest rates), 
the present value of the future cash flows and other important 
statistical measures of the mentioned costs are calculated. The 
estimated differences between the classical approach (i.e., a con-
stant yield) and the proposed model are emphasized. Apart from 
the strictly crisp setup, the fuzzification of some parameters of 
the connection is considered. An introduction of the fuzzy num-
bers leads to a better incorporation of the experts’ knowledge 
and more real-life modelling of the uncertain parameters. The 
necessary numerical algorithms and some relevant examples of 
the simulated output for both the crisp and the fuzzy settings 
are also provided.

There are various possible fields for future works based 
on the approach introduced in this paper. Firstly, other kinds of 
distributions, instead of the exponential ones, can be assumed 
– e.g., the repairing time can be described by some lognormal 
random variable. Secondly, if a different cdf is applied, a rel-
evant case can be calibrated using some real-life data, so sta-
tistical tests concerning a validity of this cdf (versus, e.g., the 
exponential one) can be proposed. It also leads to a possibility of 
measuring a level of a difference in the estimated maintenance 
costs, which can be important for the practitioners.

Fig. 9.	 Fuzzy discounted maintenance costs from Example V (circles) and Example III 
(squares)

Fig. 10.	 Fuzzy average (nominal) costs of replacements from Example V (circles) and 
Example III (squares)

Fig. 11. Fuzzy approximation of the average number of repairs from Example V

Fig. 12. Fuzzy approximation of the average number of not planned replacements from 
Example V

Table 3. Exemplary α-level cuts of the fuzzy discounted maintenance  
  costs PV c ( )  and the fuzzy average of the nominal costs of  
  replacements crpl  from Example V

α PV c ( ) crpl

0 [1026.98, 2220.02] [4.14232, 6.39796]

0.1 [1077.91, 2152.23] [4.25161, 6.28049]

0.5 [1291.05, 1889.06] [4.6915, 5.81668]

0.9 [1519.32, 1639.42] [5.13678, 5.36153]
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Appendix

Algorithm 1: Estimation of the maintenance costs – the crisp case.

Input: The number of simulations n, the parameters of each type k of the connection, the parameters of the interest rate model (see Section 2.4).

Output: The present value of the maintenance costs PV(c).

for i=1 to n do

	 for k=1 to K do

		  for j=1 to nk do

			   Generate an independent trajectory S(j) of the process of the states (see Section 2.1);

			   Store the times tl of transitions to the states 0 or 1 and the relevant periods of the repairs and the replacements (see Section 2.2);

			   Evaluate and store all of the costs cj(tl ) for each tl (see Section 2.2);

		  end

	 end

	 Put all of the times t1,t2,… in the increasing order t(1) ≤ t(2) ≤…≤ t(m)≤T;

	 PVi=0;

for j=1 to m do

		  Generate rt j( )
 and evaluate the discounted costs PV ct j( )( )  (see Section 2.3);

		  PV PV PV ci i t j
= + ( )( )

;

	 end

end

PV c
n

PV
i

n
i( ) =

=
∑

1

1
;

;

Algorithm 2: Estimation of the maintenance costs – the fuzzy case.

Input: The number of simulations n, the fuzzy parameters of each type k of the connection (see Section 4.2), the crisp parameters of the interest 	
rate model (see Section 2.4), the starting value α0, the upper bound α1, the increment Δα>0, the binary variable left.

Output: The left or right end points of approximation of the fuzzified present value of the maintenance costs PV c ( ) .

α=α0;

while α<α1 do

	 for k=1 to K do
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		  For the k type of the connection, find α-level cuts of the fuzzy parameters:   R R Rk
L
k

U
k( ) ( ) ( )[ ] = [ ] [ ]





α α α, ,   Λ Λ Λk
L
k

U
k( ) ( ) ( )[ ] = [ ] [ ]





α α α,  	
	 etc.;

		  for each fuzzified parameter p do

			   Check monotonicity of PV(c) for the argument p;

			   Set pL [α] or pU [α] depending on the monotonicity of PV(c) for the operator left;

		  end

	 end

	 Use Algorithm 1 to generate the crisp value of PV(c);

	 if left then

		  PVL [α]=PV(c);

	 else

		  PVU [α]=PV(c);

	 end

	 α=α+Δα;

end
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