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1. INTRODUCTION

We study the existence of positive solutions to the singular infinite semipositone system




−M1

( ∫
Ω
|x|−αp|∇u|pdx

)
div(|x|−αp|∇u|p−2∇u)

= |x|−(α+1)p+β(a1u
p−1 − f1(u)− b1

vγ ), x ∈ Ω,
−M2

( ∫
Ω
|x|−αp|∇v|pdx

)
div(|x|−αp|∇v|p−2∇v)

= |x|−(α+1)p+β(a2v
p−1 − f2(v)− b2

uγ ), x ∈ Ω,
u = v = 0, x ∈ ∂Ω,

(1.1)

where Ω is a bounded smooth domain of RN , N ≥ 3 with 0 ∈ Ω, 1 < p < N ,
0 ≤ α < N−p

p , γ ∈ (0, 1) and a1, a2, b1, b2, β are positive constants and fi : [0,∞)→ R,
i = 1, 2, are continuous functions and Mi : [0,∞]→ R+, i = 1, 2, aside from being con-
tinuous and nondecreasing functions and 0 < Mi,0 ≤Mi(t) ≤Mi,∞ for all t ∈ [0,∞),
verify:

(H) There exist t2 > t1 > 0 such that Mi(t2)

t
2

N−2
2

> Mi(t1)

t
2

N−2
1

, see ([10]).
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A typical example of a function satisfying this condition is Mi(t) = Mi,0 + at
(i = 1, 2) with a ≥ 0 and for all t ≥ 0. We make the following assumptions:

(A1) There exist L > 0 and b > 1 such that fi(u) ≤ Lub for all u ≥ 0 and i = 1, 2.
(A2) There exists a constant S∗ > 0 such that aiup−1 − fi(u) < S∗ for u ≥ 0

and i = 1, 2.

A simple example of fi satisfying these assumptions is fi(u) = ub, i = 1, 2, for any
b > 1.

System (1.1) is related to the stationary problem of a model introduced by Kirch-
hoff [12]. More precisely, Kirchhoff proposed a model given by the equation

ρ
∂2u

∂t2
−
(P0
h

+ E

2L

L∫

0

∣∣∣∂u
∂x

∣∣∣
2
dx
)∂2u

∂x2 = 0, (1.2)

where ρ, P0, h, E are all constants. This equation extends the classical d’Alembert wave
equation. A distinguishing feature of equation (1.2) is that the equation has a nonlocal
coefficient P0

h + E
2L
∫ L

0 |∂u∂x |2dx which depends on the average 1
2L
∫ L

0 |∂u∂x |2dx. Hence
the equation is no longer a pointwise identity. We refer to [19] for additional result on
Kirchhoff equations. In recent years, there has been considerable progress on the study
of nonlocal problems, (see [15,17,18]). Nonlocal problems can be used for modeling, for
example, physical and biological systems for which u describes a process which depends
on the average of itself, such as the population density. On the other hand, elliptic
problems involving more general operator, such as the degenerate quasilinear elliptic
operator given by −div(|x|−αp|∇u|p−2∇u), were motivated by the following Caffarelli,
Kohn and Nirenberg’s inequality (see [4, 16,22]).

The study of this type of problem is motivated by its various applications, for
example, in fluid mechanics, in newtonian fluids, in flow through porous media and in
glaciology (see [3, 7]). So, the study of positive solutions of singular elliptic problems
has more practical meanings. Let

F (h, k) = a1h
p−1 − f1(h)− b1

kγ

and
G(h, k) = a2k

q−1 − f2(k)− b2
hγ
.

Then
lim

(h,k)→(0,0)
F (h, k) = lim

(h,k)→(0,0)
G(h, k) = −∞,

and hence we refer to (1.1) as an infinite semipositone system. In [13] the authors
discussed the single problem (1.1) when M1(t) ≡ 1, α = 0, p = β = 2, and see [20]
for the single equation case when M1(t) ≡ 1. Here we focus on further extending the
study in [13,20] for infinities semipositone Kirchhoff type systems involving singularity.
Our approach is based on the method of sub-supersolutions, see [5, 8].
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2. PRELIMINARIES AND EXISTING RESULT

In this paper, we denote W 1,p
0 (Ω, |x|−αp), the completion of C∞0 (Ω), with respect

to the norm ‖u‖ = (
∫

Ω |x|−αp|∇u|pdx)
1
p . To precisely state our existence result

we consider the eigenvalue problem
{
−div(|x|−αp|∇φ|p−2∇φ) = λ|x|−(α+1)p+β |φ|p−2φ, x ∈ Ω,
φ = 0, x ∈ ∂Ω.

(2.1)

Let φ1,p be the eigenfunction corresponding to the first eigenvalue λ1,p of (2.1)
such that φ1,p(x) > 0 in Ω and ‖φ1,p‖∞ = 1 (see [14, 21]). It can be shown that
∂φ1,p
∂n < 0 on ∂Ω . Here n is the outward normal. We will also consider the unique

solution ζp(x) ∈W 1,p
0 (Ω, |x|−αp) for the problem

{
−div(|x|−αp|∇ζp|p−2∇ζp) = |x|−(α+1)p+β , x ∈ Ω,
ζp = 0, x ∈ ∂Ω,

to discuss our existence result. It is well known that ζp(x) > 0 in Ω and ∂ζp(x)
∂n < 0

on ∂Ω (see [14]).
A pair of nonnegative functions (ψ1, ψ2), (z1, z2) are called a sub-solution and

super-solution of (1.1) if they satisfy (ψ1, ψ2) = (0, 0) = (z1, z2) on ∂Ω and

M1

( ∫
Ω
|x|−αp|∇ψ1|pdx

) ∫
Ω
|x|−αp|∇ψ1|p−2∇ψ1 · ∇wdx

≤
∫
Ω
|x|−(α+1)p+β(a1ψ

p−1
1 − f1(ψ1)− b1

ψγ2
)wdx,

M2

( ∫
Ω
|x|−αp|∇ψ2|pdx

) ∫
Ω
|x|−αp|∇ψ2|p−2∇ψ2 · ∇wdx

≤
∫
Ω
|x|−(α+1)p+β(a2ψ

p−1
2 − f2(ψ2)− b2

ψγ1
)wdx,

M1

( ∫
Ω
|x|−αp|∇z1|pdx

) ∫
Ω
|x|−αp|∇z1|p−2∇z1 · ∇wdx

≥
∫
Ω
|x|−(α+1)p+β(a1z

p−1
1 − f1(z1)− b1

zγ2
)wdx,

M2

( ∫
Ω
|x|−αp|∇z2|pdx

) ∫
Ω
|x|−αp|∇z2|p−2∇z2 · ∇wdx

≥
∫
Ω
|x|−(α+1)p+β(a2z

p−1
2 − f2(z2)− b2

zγ1
)wdx,

for all w ∈W = {w ∈ C∞0 (Ω) | w ≥ 0, x ∈ Ω}.
A key role in our arguments will be played by the following auxiliary result. Its proof

is similar to those presented in [6]. The reader can consult further the papers [1, 2, 11].
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Lemma 2.1. Assume thatM : R+
0 →R+ is continuous and increasing, and there exists

m0 > 0 such that M(t) ≥ m0 for all t ∈ R+
0 . If the functions u, v ∈ W 1,p

0 (Ω, |x|−αp)
satisfy

M
(∫

Ω

|x|−αp|∇u|pdx
)∫

Ω

|x|−αp|∇u|p−2∇u · ∇ϕdx

≤M
(∫

Ω

|x|−αp|∇v|pdx
)∫

Ω

|x|−αp|∇v|p−2∇v · ∇ϕdx

for all ϕ ∈W 1,p
0 (Ω, |x|−αp), ϕ ≥ 0, then u ≤ v in Ω.

From Lemma 2.1 we can establish the basic principle of the sub-and supersolution
method for nonlocal systems. Indeed, we consider the following nonlocal system





−M1

( ∫
Ω
|x|−αp|∇u|pdx

)
div(|x|−αp|∇u|p−2∇u) = |x|−(α+1)p+βh(x, u, v), x ∈ Ω,

−M2

( ∫
Ω
|x|−αp|∇v|pdx

)
div(|x|−αp|∇v|p−2∇v) = |x|−(β+1)p+βk(x, u, v), x ∈ Ω,

u = v = 0, x ∈ ∂Ω,
(2.2)

where Ω is a bounded smooth domain of RN and h, k : Ω̄ × R × R → R satisfy
the following conditions:

(HK1) h(x, s, t) and k(x, s, t) are caratheodory functions and they are bounded if s, t
belong to bounded sets.

(HK2) There exists a function g : R → R being continuous, nondecreasing, with
g(0) = 0, 0 ≤ g(s) ≤ c(1 + |s|min{p,q}) for some c > 0, and applications
s 7→ h(x, s, t) + g(s) and t 7→ k(x, s, t) + g(t) are nondecreasing, for a.e x ∈ Ω.

If u, v ∈ L∞(Ω), with u(x) ≤ v(x) for a.e x ∈ Ω, we denote by [u, v] the set
{w ∈ L∞(Ω) : u(x) ≤ w(x) ≤ v(x) for a.e x ∈ Ω}. Using Lemma (2.1) and the method
as in the proof of Theorem 2.4 of [14] (see also Section 4 of [5]), we can establish
a version of the abstract lower and upper-solution method for our class of the operators
as follows.

Proposition 2.2. Let Mi : R+
0 → R+, i = 1, 2, are two continuous and increasing

functions 0 < Mi ≤ Mi(t) ≤ Mi,∞ for all t ∈ R+. Assume that the functions h, k
satisfy the conditions (HK1) and (HK2). Assume that (u, v), (u, v) are respectively,
a weak subsolution and a weak supersolution of system (2.2) with u(x) ≤ u(x) and
v(x) ≤ v(x) for a.e x ∈ Ω. Then there exist a minimal (u∗, v∗) (and, respectively,
a maximal (u∗, v∗)) weak solution for system (2.2) in the set [u, u]× [v, v]. In particular,
every weak solution (u, v) ∈ [u, u]× [v, v] of system (2.2) satisfies u∗(x) ≤ u(x) ≤ u∗(x)
and v∗(x) ≤ v(x) ≤ v∗(x) for a.e x ∈ Ω.
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Theorem 2.3. Assume that

min{a1, a2} > KK
( p

p− 1 + γ

)p−1
λ1,p,

where K = max{M1,∞,M2,∞}, then there exists c > 0 such that if max{b1, b2} ≤ c,
then the system (1.1) admits a positive solution.

Proof. We start with the construction of a positive subsolution for (1.1). To get
a positive subsolution, we can apply an anti-maximum principle (see [9]), from which
we know that there exist a δ1 > 0 and a solution zλ of

{
−div(|x|−αp|∇z|p−2∇z) = |x|−(α+1)p+β(λzp−1 − 1), x ∈ Ω,
z = 0 x ∈ ∂Ω,

for λ ∈ (λ1,p, λ1,p + δ1).
Fix

λ̂ ∈
(
λ1,p,min

{(p− 1 + γ

p

)p−1
a1, λ1,p + δ1

})
.

Let θ = ‖zλ̂‖. It is well known that zλ̂ > 0 in Ω and ∂zλ̂
∂n < 0 on ∂Ω, where n is

the outer unit normal to Ω. Hence there exist positive constants ε, δ, σ such that

|x|−αp|∇zλ̂|p ≥ ε, x ∈ Ωδ, (2.3)

zλ̂ ≥ σ, x ∈ Ω0 = Ω\Ωδ,
where Ωδ = {x ∈ Ω | d(x, ∂Ω) ≤ δ}. Choose η1, η2 > 0 such that η1 ≤ min |x|−(α+1)p+β ,
and η2 ≥ max |x|−(α+1)p+β , in Ωδ. We construct a subsolution (ψ1, ψ2) of (1.1) using zλ̂.
Define

(ψ1, ψ2) =
(
M
(p− 1 + γ

p

)
z

p
p−1+γ

λ̂
,M
(p− 1 + γ

p

)
z

p
p−1+γ

λ̂

)
,

where

M = min
{(M1,∞

(
p

p−1+γ

)b
θ

(1−γ)(p−1)
p−1+γ

Lθ
pb

p−1+γ

) 1
b−p+1

,

(M2,∞
(

p
p−1+γ

)b
θ

(1−γ)(p−1)
p−1+γ

Lθ
pb

p−1+γ

) 1
b−p+1

,

((p−1
Lp

)
θ
p(p−1)
p−1+γ

[(
p−1+γ
p

)p−1
a1 −M1,∞λ̂

]

(
p−1+γ
p

)b
θ

pb
p−1+γ

) 1
b−p+1

,

((p−1
Lp

)
θ
p(p−1)
p−1+γ

[(
p−1+γ
p

)p−1
a2 −M2,∞λ̂

]

(
p−1+γ
p

)b
θ

pb
p−1+γ

) 1
b−p+1

}
.
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Let w ∈W . Then a calculation shows that

∇ψ1 = Mz
1−γ
p−1+γ

λ̂
∇zλ̂,

M1

(∫

Ω

|x|−αp|∇ψ1|pdx
)∫

Ω

|x|−αp|∇ψ1|p−2∇ψ1 · ∇wdx

≤M1,∞M
p−1

∫

Ω

|x|−αpz
(1−γ)(p−1)
p−1+γ

λ̂
|∇zλ̂|p−2∇zλ̂∇wdx

= M1,∞M
p−1

∫

Ω

|x|−αp|∇zλ̂|p−2∇zλ̂
[
∇
(
z

(1−γ)(p−1)
p−1+γ

λ̂
w
)
−
(
∇z

(1−γ)(p−1)
p−1+γ

λ̂

)
w

]
dx

= M1,∞M
p−1

∫

Ω

[
|x|−(α+1)p+βz

(1−γ)(p−1)
p−1+γ

λ̂
(λ̂zp−1

λ̂
− 1)

− |x|−αp (1− γ)(p− 1)
p− 1 + γ

|∇zλ̂|p

z
γp

p−1+γ

λ̂

]
wdx

= M1,∞

∫

Ω

[
|x|−(α+1)p+βMp−1λ̂z

p(p−1)
p−1+γ

λ̂
− |x|−(α+1)p+βMp−1z

(1−γ)(p−1)
p−1+γ

λ̂

− |x|−αpMp−1 (1− γ)(p− 1)
p− 1 + γ

|∇zλ̂|p

z
γp

p−1+γ

λ̂

]
wdx,

and

∫

Ω

|x|−(α+1)p+β
[
a1ψ

p−1
1 − f1(ψ1)− b1

ψγ2

]
wdx

=
∫

Ω

[
|x|−(α+1)p+βa1M

p−1
(p− 1 + γ

p

)p−1
z
p(p−1)
p−1+γ

λ̂

− |x|−(α+1)p+βf1

(
M
(p− 1 + γ

p

)
z

p
p−1+γ

λ̂

)

− |x|−(α+1)p+β b1

Mγ
(
p−1+γ
p

)γ
z

γp
p−1+γ

λ̂

]
wdx.
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Similarly,

M2

(∫

Ω

|x|−αp|∇ψ2|pdx
)∫

Ω

|x|−αp|∇ψ2|p−2∇ψ2∇wdx

≤M2,∞

∫

Ω

[
|x|−(α+1)p+βMp−1λ̂z

p(p−1)
p−1+γ

λ̂

− |x|−(α+1)p+βMp−1z
(1−γ)(p−1)
p−1+γ

λ̂

− |x|−αpMp−1 (1− γ)(p− 1)
p− 1 + γ

|∇zλ̂|p

z
γp

p−1+γ

λ̂

]
wdx

and
∫

Ω

|x|−(α+1)p+β
[
a2ψ

p−1
2 − f2(ψ2)− b2

ψγ1

]
wdx

=
∫

Ω

[
|x|−(α+1)p+βa2M

p−1
(p− 1 + γ

p

)p−1
z
p(p−1)
p−1+γ

λ̂

− |x|−(α+1)p+βf2

(
M
(p− 1 + γ

p

)
z

p
p−1+γ

λ̂

)

− |x|−(α+1)p+β b2

Mγ
(
p−1+γ
p

)γ
z

γp
p−1+γ

λ̂

]
wdx.

Let

c = min
{
M1,∞M

p−1+γ (1− γ)(p− 1)
p− 1 + γ

(p− 1 + γ

p

)γ ε
η2
,

M2,∞M
p−1+γ (1− γ)(p− 1)

p− 1 + γ

(p− 1 + γ

p

)γ ε
η2
,

Mp−1+γ

p

(p− 1 + γ

p

)γ
σp
[(p− 1 + γ

p

)p−1
a1 −M1,∞λ̂

]
,

Mp−1+γ

p

(p− 1 + γ

p

)γ
σp
[(p− 1 + γ

p

)p−1
a2 −M2,∞λ̂

]}
.

First we consider the case when x ∈ Ωδ. We have |x|−αp|∇zλ̂| ≥ ε on Ωδ. Since

M1,∞
( p

p− 1 + γ

)p−1
λ̂ ≤ a1,

we have

|x|−(α+1)p+βM1,∞M
p−1λ̂z

p(p−1)
p−1+γ

λ̂
≤ |x|−(α+1)p+βa1M

p−1
(p− 1 + γ

p

)p−1
z
p(p−1)
p−1+γ

λ̂
,

(2.4)
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and from the choice of M , we know that

LM b−p+1θ
pb

p−1+γ ≤M1,∞
( p

p− 1 + γ

)b
θ

(1−γ)(p−1)
p−1+γ . (2.5)

By (2.5) and (A1), we have

−|x|−(α+1)p+βM1,∞M
p−1z

(1−γ)(p−1)
p−1+γ

λ̂
≤ −|x|−(α+1)p+βLM b

(p− 1 + γ

p

)b
z

pb
p−1+γ

λ̂

≤ −|x|−(α+1)p+βf1

(
M
(p− 1 + γ

p

)
z

p
p−1+γ

λ̂

)
.

(2.6)

Next, from (2.3) and definition of c, we have

|x|−αpM1,∞M
p−1 (1− γ)(p− 1)

p− 1 + γ
|∇zλ̂|p ≥ |x|−(α+1)p+β b1

Mγ(p−1+γ
p )γ

and

−|x|−αpM1,∞M
p−1 (1− γ)(p− 1)

p− 1 + γ

|∇zλ̂|p

z
γp

p−1+γ

λ̂

≤ −|x|−(α+1)p+β b1

Mγ
(
p−1+γ
p

)γ
z

γp
p−1+γ

λ̂

.

(2.7)
Hence by using (2.4), (2.6) and (2.7) for b1 ≤ c, we have

M1

(∫

Ω̄δ

|x|−αp|∇ψ1|pdx
)∫

Ωδ

|x|−αp|∇ψ1|p−2∇ψ1 · ∇wdx

≤
∫

Ωδ

[
|x|−(α+1)p+βa1M

p−1
(p− 1 + γ

p

)p−1
z
p(p−1)
p−1+γ

λ̂

− |x|−(α+1)p+βf1

(
M
(p− 1 + γ

p

)
z

p
p−1+γ

λ̂

)

− |x|−(α+1)p+β b1

Mγ
(
p−1+γ
p

)γ
z

γp
p−1+γ

λ̂1

]
wdx

=
∫

Ωδ

|x|−(α+1)p+β
[
a1ψ

p−1
1 − f1(ψ1)− b1

ψγ2

]
wdx.

(2.8)
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Similarly,

M2

(∫

Ωδ

|x|−αp|∇ψ2|pdx
)∫

Ωδ

|x|−αp|∇ψ2|p−2∇ψ2 · ∇wdx

≤
∫

Ωδ

[
|x|−(α+1)p+βa2M

p−1
(p− 1 + γ

p

)p−1
z
p(p−1)
p−1+γ

λ̂

− |x|−(α+1)p+βf2

(
M
(p− 1 + γ

p

)
z

p
p−1+γ

λ̂

)

− |x|−(α+1)p+β b2

Mγ
(
p−1+γ
p

)γ
z

γp
p−1+γ

λ̂

]
wdx

=
∫

Ωδ

|x|−(α+1)p+β
[
a2ψ

p−1
2 − f2(ψ2)− b2

ψγ1

]
wdx.

(2.9)

On the other hand, on Ω0 = Ω\Ωδ, we have zλ̂ ≥ σ and from the definition of c,
for b1 ≤ c we have

b1

Mγ
(
p−1+γ
p

)γ ≤
1
p
Mp−1σp

[(p− 1 + γ

p

)p−1
a1 −M1,∞λ̂

]

≤ 1
p
Mp−1zp

λ̂

[(p− 1 + γ

p

)p−1
a1 −M1,∞λ̂

]
.

(2.10)

Also from the choice of M , we have

LM b−p+1
(p− 1 + γ

p

)b
z

pb
p−1+γ

λ̂

≤ z
p(p−1)
p−1+γ

λ̂

p− 1
p

[(p− 1 + γ

p

)p−1
a1 −M1,∞λ̂

]
.

(2.11)
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Hence from (2.10) and (2.11) we have

M1

(∫

Ω0

|x|−αp|∇ψ1|pdx
)∫

Ω0

|x|−αp|∇ψ1|p−2∇ψ1∇wdx

≤M1,∞

∫

Ω0

[
|x|−(α+1)p+βMp−1λ̂z

p(p−1)
p−1+γ

λ̂

− |x|−(α+1)p+βMp−1z
(1−γ)(p−1)
p−1+γ

λ̂

− |x|−αpMp−1 (1− γ)(p− 1)
p− 1 + γ

|∇zλ̂|p

z
γp

p−1+γ

λ̂

]
wdx

≤M1,∞

∫

Ω0

|x|−(α+1)p+βMp−1λ̂z
p(p−1)
p−1+γ

λ̂
wdx

= M1,∞

∫

Ω0

|x|−(α+1)p+β 1

z
γp

p−1+γ

λ̂

[1
p
λ̂Mp−1zp

λ̂
+ p− 1

p
λ̂Mp−1zp

λ̂

]
wdx

≤
∫

Ω0

|x|−(α+1)p+β 1

z
γp

p−1+γ

λ̂

[(1
p
Mp−1

(p− 1 + γ

p

)p−1
a1z

p

λ̂
− b1

Mγ
(
p−1+γ
p

)γ
)

+Mp−1zp
λ̂

(p− 1 + γ

p

)p−1

×
( (p− 1)a1

p
− LM b−p+1

(p− 1 + γ

p

)b(p− 1 + γ

p

)1−p z
pb

p−1+γ

λ̂

z
p(p−1)
p−1+γ

λ̂

)]
wdx

=
∫

Ω0

|x|−(α+1)p+β
[
a1M

p−1
(p− 1 + γ

p

)p−1
z
p(p−1)
p−1+γ

λ̂
− LM b

(p− 1 + γ

p

)b
z

pb
p−1+γ

λ̂

−
b1z

−γp
p−1+γ

λ̂

Mγ
(
p−1+γ
p

)γ
]
wdx

≤
∫

Ω0

|x|−(α+1)p+β
[
a1M

p−1
(p− 1 + γ

p

)p−1
z
p(p−1)
p−1+γ

λ̂
− f1

(
M
(p− 1 + γ

q

)
z

p
p−1+γ

λ̂

)

− b1

Mγ
(
p−1+γ
p

)γ
z

γp
p−1+γ

λ̂

]
wdx =

∫

Ω0

|x|−(α+1)p+β
[
a1ψ

p−1
1 − f1(ψ1)− b1

ψγ2

]
wdx.

(2.12)
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Similarly,

M2

(∫

Ω0

|x|−αp|∇ψ2|pdx
)∫

Ω0

|x|−αp|∇ψ2|p−2∇ψ2∇wdx

≤
∫

Ω0

|x|−(α+1)p+β
[
a2ψ

p−1
2 − f2(ψ2)− b2

ψγ1

]
wdx.

(2.13)

By using (2.8), (2.9), (2.12) and (2.13) we see that (ψ1, ψ2) is a sub-solution
of (1.1).

Next, we construct a super-solution (z1, z2) of (1.1) such that (z1, z2) ≥ (ψ1, ψ2).
Let

(z1, z2) =
[( S∗

M1,0

) 1
p−1

ζp(x),
( S∗

M2,0

) 1
p−1

ζp(x)
]
.

By (A2) and choosing a large constant S∗, we shall verify that (z1, z2) is a super-solution
of (1.1). To this end, let w ∈W . Then we have

M1

(∫

Ω

|x|−αp|∇z1|pdx
)∫

Ω

|x|−αp|∇z1|p−2∇z1∇wdx

≥ S∗
∫

Ω

|x|−(α+1)p+βwdx

≥
∫

Ω

|x|−(α+1)p+β
[
a1z

p−1
1 − f1(z1)− b1

zγ2

]
wdx.

Similarly,

M2

(∫

Ω

|x|−αp|∇z2|pdx
)∫

Ω

|x|−αp|∇z2|p−2∇z2∇wdx

≥
∫

Ω

|x|−(α+1)p+β
[
a2z

p−1
2 − f2(z2)− b2

zγ1

]
wdx.

Thus (z1, z2) is a super-solution of (1.1). Finally, we can choose S∗ � 1 such
that (ψ1, ψ2) ≤ (z1, z2) in Ω. Hence, if max{b1, b2} ≤ c, by Lemma 2.1 there exists
a positive solution (u, v) of (1.1) such that (ψ1, ψ2) ≤ (u, v) ≤ (z1, z2). This completes
the proof of Theorem 2.3.
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