PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Prediction about ground hardening layers distribution on grinding chatter by contact stiffness

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The grinding hardening is an integrated manufacturing technology which combines the surface hardening theory and the grinding technology. However, the grinding chatter accompanies with the whole grinding hardening process. It is the existence of the grinding chatter that makes the transformation unsteady. To this end, the paper presents a three-hybrid model to investigate the relationship between the grinding chatter and the grinding hardening layers distribution. The dynamic grinding force with the analytic and numerical method is calculated firstly. Then the finite difference method (FDM) is used to obtain the dynamic temperature distribution accordingly. Thirdly, the cellular automata (CA) method is applied to calculate the transformed microstructure distribution under different chatter strengths. The study shows that the thickness of the grinding hardening layers goes up with the increase of the grinding chatter. However, the quality of the grinding hardening layers reduces with the increase of the chatter strength. In addition, the martensite content varies with different hardening layers since each layer has its own unique temperature distribution. Moreover, metallurgical experiments are conducted to validate the proposed model. The model is anticipated to be meaningful for the improvements of workpiece's mechanical properties by controlling the chatter strength in the industry manufacturing.
Rocznik
Strony
1626--1642
Opis fizyczny
Bibliogr. 37 poz., fot., rys., wykr.
Twórcy
autor
  • Northeastern University, China
autor
  • Northeastern University, China
autor
  • Northeastern University, China
autor
  • Northeastern University, China
autor
  • Northeastern University, China
Bibliografia
  • [1] T.R.A. Pearce, D.C. Fricker, A.J.L. Harrison, Predicting the occurrence of grind hardening in cubic boron nitride grinding of crankshaft steel, Proc. Inst. Mech. Eng. Part B: J. Eng. Manuf. 218 (2004) 1339–1356.
  • [2] T. Nguyen, L.C. Zhang, D.L. Sun, Q. Wu, Characterizing the mechanical properties of the hardened layer induced by grinding-hardening, Mach. Sci. Technol. 18 (2014) 277–298.
  • [3] L.C. Zhang, L.C. Zhang, Grind-hardening of steel surfaces: a focused review, Int. J. Abras. Technol. 1 (2007) 3–36.
  • [4] T. Brockhoff, E. Brinksmeier, Grind-hardening: a comprehensive view, CIRP Ann. – Manuf. Technol. 48 (1999) 255–260.
  • [5] S. Krajewski, J. Nowacki, Dual-phase steels microstructure and properties consideration based on artificial intelligence techniques, Arch. Civil Mech. Eng. 14 (2014) 278–286.
  • [6] I. Zarudi, L.C. Zhang, Mechanical property improvement of quenchable steel by grinding, J. Mater. Sci. 37 (2002) 3935–3943.
  • [7] X. Ji, X. Zhang, S.Y. Liang, Predictive modeling of residua stress in minimum quantity lubrication machining, Int. J. Adv. Manuf. Technol. 70 (2014) 2159–2168.
  • [8] K.L. Johnson, Contact mechanics, J. Tribol. 108 (1986) 464.
  • [9] E. Graham, M. Mehrpouya, S.S. Park, Robust prediction of chatter stability in milling based on the analytical charter stability, J. Manuf. Process. 15 (2013) 508–517.
  • [10] Y. Liu, T.-x. Li, K. Liu, Y.-m. Zhang, Chatter reliability prediction of turning process system with uncertainties, Mech. Syst. Signal Process. 66–67 (2016) 232–247.
  • [11] E. Brinksmeier, T. Brockhoff, Utilization of grinding heat as a new heat treatment process, CIRP Ann. – Manuf. Technol. 45 (1996) 283–286.
  • [12] L.F. Liu, J.Z. Zhuang, C. Liu, Influence of depth of cut on grindhardened layer and its uniformity, Appl. Mech. Mater. 109 (2012) 345–349.
  • [13] G.C. Wang, J.D. Liu, H.J. Pei, Z.H. Jia, L.J. Ma, Study on forming mechanism of surface hardening in two-pass grinding 40Cr steel, Key Eng. Mater. 304–305 (2006) 588–592.
  • [14] S. Xiu, X. Shi, Transformation mechanism of microstructure and residual stress within hardening layer in PSHG, J. Adv. Mech. Des. Syst. Manuf. 9 (2015), JAMDSM0038.
  • [15] X. Wang, T. Yu, X. Sun, Y. Shi, W. Wang, Study of 3D grinding temperature field based on finite difference method: considering machining parameters and energy partition, Int. J. Adv. Manuf. Technol. 84 (2016) 915–927.
  • [16] B. Shen, A.J. Shih, G. Xiao, A heat transfer model based on finite difference method for grinding, J. Manuf. Sci. Eng. 133 (2011) 031001.
  • [17] B. Su, Z. Han, Y. Zhao, B. Shen, E. Xu, S. Huang, B. Liu, Numerical simulation of microstructure evolution of heavy steel casting in casting and heat treatment processes, Trans. Iron Steel Inst. Jpn. 54 (2014) 408–414.
  • [18] C. Zheng, D. Raabe, D. Li, Prediction of post-dynamic austenite-to-ferrite transformation and reverse transformation in a low-carbon steel by cellular automatom modeling, Acta Mater. 60 (2012) 4768–4779.
  • [19] D.H. Sherman, B.J. Yang, A.V. Catalina, A.A. Hattiangadi, P. Zhao, L. Chuzhoy, M.L. Johnson, Modeling of microstructure evolution of athermal transformation of lath martensite, in: Materials Science Forum, Trans Tech Publ, 2007, pp. 4795–4800.
  • [20] S. Malkin, Grinding technology: theory and applications of machining with abrasives, SME (1989).
  • [21] Y. Shao, S.Y. Liang, Predictive force modeling in MQL (minimum quantity lubrication) grinding, Am. Soc. Mech. Eng. (2014), V002T002A007.
  • [22] D. Setti, B. Kirsch, J.C. Aurich, An analytical method for prediction of material deformation behavior in grinding using single grit analogy, Procedia CIRP 58 (2017) 263–268.
  • [23] X. Ji, X. Zhang, S.Y. Liang, A new approach to predict machining force and temperature with minimum quantity lubrication, in: in: ASME 2012 International Manufacturing Science and Engineering Conference Collocated with the North American Manufacturing Research Conference and In Participation with the International Conference on Tribology Materials and Processing, 2012, 69–76.
  • [24] M. Liu, J.Y. Lin, C. Lu, K.A. Tieu, K. Zhou, T. Koseki, Progress In indentation study of materials via both experimental and numerical methods, Crystals 7 (2017) 258.
  • [25] K.M. Li, S.Y. Liang, Modeling of cutting forces in near dry machining under tool wear effect, Int. J. Mach. Tools Manuf. 47 (2007) 1292–1301.
  • [26] D.W. Smithey, S.G. Kapoor, R.E. DeVor, A new mechanistic model for predicting worn tool cutting forces, Mach. Sci. Technol. 5 (2001) 23–42.
  • [27] C. Sun, Y. Niu, Z. Liu, Y. Wang, S. Xiu, Study on the surfach topography considering grinding chatter based on dynamice and reliability, Int. J. Adv. Manuf. Technol. (2017) 1–14.
  • [28] C. Sun, Z. Liu, D. Lan, J. Duan, S. Xiu, Study on the influence of the grinding chatter on the workpiece's microstructure transformation, Int. J. Adv. Manuf. Technol. (2018).
  • [29] T. Suzuki, K. Isaka, T. Suzuki, K. Isaka, T. Suzuki, K. Isaka, T. Suzuki, K. Isaka, T. Suzuki, K. Isaka, Control of the residual stress of plates, Rev. Métall. (2017) 893–899.
  • [30] D. Zhang, C. Li, Y. Zhang, D. Jia, X. Zhang, Experimental research on the energy ratio coefficient and specific grinding energy in nanoparticle jet MQL grinding, Int. J. Adv. Manuf. Technol. 78 (2015) 1275–1288.
  • [31] W.B. Rowe, J.A. Pettit, A. Boyle, J.L. Moruzzi, Avoidance of Thermal damage in grinding and prediction of the damage threshold, CIRP Ann. – Manuf. Technol. 37 (1988) 327–330.
  • [32] B. Białobrzeska, R. Dziurka, A. Żak, P. Bała, The influence of austenitization temperature on phase transformations of supercooled austenite in low-alloy steels with high resistance to abrasion wear, Arch. Civil Mech. Eng. 18 (2018) 413–429.
  • [33] B. Zhu, Y. Zhang, C. Wang, P.X. Liu, W.K. Liang, J. Li, Modeling of the austenitization of ultra-high strength steel with cellular automation method, Metall. Mater. Trans. A 45 (2014) 3161–3171.
  • [34] Y. Zhi, W.J. Liu, X.H. Liu, Simulation of martensitic transformation of high strength and elongation steel by cellular automaton, in: Advanced Materials Research, Trans Tech Publ, 2014, pp. 235–238.
  • [35] S. Denis, S. Sjöström, A. Simon, Coupled temperature, stress, phase transformation calculation, Metall. Mater. Trans. A 18 (1987) 1203–1212.
  • [36] R. Muhamad, M.S.M. Ali, D.J. Oehlers, M. Griffith, The tension stiffening mechanism in reinforced concrete prisms, Adv. Struct. Eng. 15 (2012) 2053–2070.
  • [37] P.H. Bischoff, Tension stiffening and cracking of steel fiberreinforced concrete, J. Mater. Civil Eng. 15 (2003) 174–182.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-10c3c43e-46d4-4f2b-8aa8-8c75fc2e9d01
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.